Fuzzy K-Minpen Clustering and K-nearest-minpen Classification Procedures Incorporating Generic Distance-Based Penalty Minimizers

被引:2
作者
Cena, Anna [1 ]
Gagolewski, Marek [1 ,2 ]
机构
[1] Polish Acad Sci, Syst Res Inst, Ul Newelska 6, PL-01447 Warsaw, Poland
[2] Warsaw Univ Technol, Fac Math & Informat Sci, Ul Koszykowa 75, PL-00662 Warsaw, Poland
来源
INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS, IPMU 2016, PT II | 2016年 / 611卷
关键词
Fuzzy k-means algorithm; Clustering; Classification; Fusion functions; Penalty minimizers; CENTROIDS; CANCER;
D O I
10.1007/978-3-319-40581-0_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We discuss a generalization of the fuzzy (weighted) k-means clustering procedure and point out its relationships with data aggregation in spaces equipped with arbitrary dissimilarity measures. In the proposed setting, a data set partitioning is performed based on the notion of points' proximity to generic distance-based penalty minimizers. Moreover, a new data classification algorithm, resembling the k-nearest neighbors scheme but less computationally and memory demanding, is introduced. Rich examples in complex data domains indicate the usability of the methods and aggregation theory in general.
引用
收藏
页码:445 / 456
页数:12
相关论文
共 22 条
[1]  
[Anonymous], P 8 INT SUMM SCH AGG
[2]  
[Anonymous], 2016, PRACTICAL GUIDE AVER
[3]  
[Anonymous], Pattern Recognition with Fuzzy Objective Function Algorithms, DOI 10.1007/978-1-4757-0450-1_3
[4]   Trapezoidal approximation and aggregation [J].
Ban, Adrian ;
Coroianu, Lucian ;
Grzegorzewski, Przemyslaw .
FUZZY SETS AND SYSTEMS, 2011, 177 (01) :45-59
[5]  
Bock H.-H., 2008, Electronic Journal for History of Probability and Statistics, V4, P1
[6]  
Boytsov L., 2011, J. Exp. Algorithmics (JEA), V16, p1.1, DOI DOI 10.1145/1963190.1963191
[7]   Aggregation functions based on penalties [J].
Calvo, Tomasa ;
Beliakov, Gleb .
FUZZY SETS AND SYSTEMS, 2010, 161 (10) :1420-1436
[8]   On central tendency and dispersion measures for intervals and hypercubes [J].
Chavent, Marie ;
Saracco, Jerome .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (09) :1471-1482
[9]   Ordering by weighted number of wins gives a good ranking for weighted tournaments [J].
Coppersmith, Don ;
Fleischer, Lisa ;
Rudra, Atri .
PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, :776-+
[10]   An efficient approach for the rank aggregation problem [J].
Dinu, Liviu P. ;
Manea, Florin .
THEORETICAL COMPUTER SCIENCE, 2006, 359 (1-3) :455-461