Integrability in anyonic quantum spin chains via a composite height model

被引:5
作者
Kakashvili, Paata [1 ]
Ardonne, Eddy [1 ]
机构
[1] NORDITA, SE-10691 Stockholm, Sweden
来源
PHYSICAL REVIEW B | 2012年 / 85卷 / 11期
关键词
NEAREST-NEIGHBOR INTERACTION; 8-VERTEX SOS MODEL; FIELD-THEORY; EXCLUSION STATISTICS; LINEAR CHAIN; HALL STATES; IDENTITIES; PROBABILITIES; SYSTEMS; POINTS;
D O I
10.1103/PhysRevB.85.115116
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, properties of collective states of interacting non-Abelian anyons have attracted considerable attention. We study an extension of the "golden chain model," where two-and three-body interactions are competing. Upon fine tuning the interaction, the model is integrable. This provides an additional integrable point of the model, on top of the integrable point, when the three-body interaction is absent. To solve the model, we construct a new, integrable height model, in the spirit of the restricted solid-on-solid model solved by Andrews et al. [J. Stat. Phys. 35, 193 (1984)]. The heights in our model live on both the sites and links of the square lattice. The model is solved by means of the corner transfer matrix method. We find a connection between local height probabilities and characters of a conformal field theory governing the critical properties at the integrable point. In the antiferromagnetic regime, the criticality is described by the Z(k) parafermion conformal field theory, while the su(2)(1)xsu(2)(1)xsu(2)(k-2)/su(2)(k) coset conformal field theory describes the ferromagnetic regime.
引用
收藏
页数:22
相关论文
共 40 条
  • [1] 8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES
    ANDREWS, GE
    BAXTER, RJ
    FORRESTER, PJ
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) : 193 - 266
  • [2] Microscopic models of interacting Yang-Lee anyons
    Ardonne, E.
    Gukelberger, J.
    Ludwig, A. W. W.
    Trebst, S.
    Troyer, M.
    [J]. NEW JOURNAL OF PHYSICS, 2011, 13
  • [3] Non-abelian spin-singlet quantum Hall states: wave functions and quasihole state counting
    Ardonne, E
    Read, N
    Rezayi, E
    Schoutens, K
    [J]. NUCLEAR PHYSICS B, 2001, 607 (03) : 549 - 576
  • [4] New class of non-Abelian spin-singlet quantum Hall states
    Ardonne, E
    Schoutens, K
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (25) : 5096 - 5099
  • [5] Theory of Topological Edges and Domain Walls
    Bais, F. A.
    Slingerland, J. K.
    Haaker, S. M.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (22)
  • [6] Baxter R., 2007, Exactly Solved Models in Statistical Mechanics
  • [7] Corner transfer matrices in statistical mechanics
    Baxter, R. J.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (42) : 12577 - 12588
  • [8] INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY
    BELAVIN, AA
    POLYAKOV, AM
    ZAMOLODCHIKOV, AB
    [J]. NUCLEAR PHYSICS B, 1984, 241 (02) : 333 - 380
  • [9] EXACTLY SOLVABLE SOS MODELS - LOCAL HEIGHT PROBABILITIES AND THETA-FUNCTION IDENTITIES
    DATE, E
    JIMBO, M
    KUNIBA, A
    MIWA, T
    OKADO, M
    [J]. NUCLEAR PHYSICS B, 1987, 290 (02) : 231 - 273
  • [10] CONFORMAL ALGEBRA AND MULTIPOINT CORRELATION-FUNCTIONS IN 2D STATISTICAL-MODELS
    DOTSENKO, VS
    FATEEV, VA
    [J]. NUCLEAR PHYSICS B, 1984, 240 (03) : 312 - 348