On existence of log minimal models and weak Zariski decompositions

被引:19
作者
Birkar, Caucher [1 ]
机构
[1] Univ Cambridge, DPMMS, Ctr Math Sci, Cambridge CB3 0WB, England
关键词
TERMINATION; SHOKUROV; FLIPS;
D O I
10.1007/s00208-011-0756-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first introduce a weak type of Zariski decomposition in higher dimensions: an -Cartier divisor has a weak Zariski decomposition if birationally and in a numerical sense it can be written as the sum of a nef and an effective -Cartier divisor. We then prove that there is a very basic relation between Zariski decompositions and log minimal models which has long been expected: we prove that assuming the log minimal model program in dimension d - 1, a lc pair (X/Z, B) of dimension d has a log minimal model (in our sense) if and only if K (X) + B has a weak Zariski decomposition/Z.
引用
收藏
页码:787 / 799
页数:13
相关论文
共 17 条
[1]  
[Anonymous], 2003, P STEKLOV I MATH, DOI DOI 10.5427/JSING.2014.8B
[2]  
Birkar C, 2010, EMS SER CONGR REP, P77
[3]   On existence of log minimal models II [J].
Birkar, Caucher .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 658 :99-113
[4]   Log minimal models according to Shokurov [J].
Birkar, Caucher .
ALGEBRA & NUMBER THEORY, 2009, 3 (08) :951-958
[5]   EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE [J].
Birkar, Caucher ;
Cascini, Paolo ;
Hacon, Christopher D. ;
McKernan, James .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) :405-468
[6]   The Iitaka conjecture Cn,m in dimension six [J].
Birkar, Caucher .
COMPOSITIO MATHEMATICA, 2009, 145 (06) :1442-1446
[7]   Addendum to "termination of 4-fold canonical flips" [J].
Fujino, O .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2005, 41 (01) :251-257
[8]   ZARISKI PROBLEM [J].
FUJITA, T .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1979, 55 (03) :106-110
[10]  
KAWAMATA Y, 1987, P SYMP PURE MATH, V46, P425