Activation and Deactivation of Au-Cu/SBA-15 Catalyst for Preferential Oxidation of CO in H2-Rich Gas

被引:83
作者
Li, Xu [2 ]
Fang, Stella See Soon [2 ]
Teo, Jaclyn [2 ]
Foo, Yong Lim [1 ]
Borgna, Armando [2 ]
Lin, Ming [1 ]
Zhong, Ziyi [2 ]
机构
[1] ASTAR, Inst Mat Res & Engn, Singapore 117602, Singapore
[2] ASTAR, Inst Chem & Engn Sci, Jurong Isl 627833, Singapore
关键词
gold catalyst; AuCu alloy; PROX reaction; particle size; point EDX analysis; activation; deactivation; CARBON-MONOXIDE; GOLD; SURFACE; OXYGEN; AU/ALPHA-FE2O3; HYDROGENATION; NANOPARTICLES; ALPHA-FE2O3; PARTICLES; CHEMISTRY;
D O I
10.1021/cs200536a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work aims to develop an efficient catalyst for preferential oxidation (PROX) of CO in a H-2-rich gas and obtain a dear structure property relationship of the catalyst. A Au/CuO/SBA-15 catalyst was designed and prepared via a nanoengineering approach in which the metallic particles of average size 3 nm located in the vicinity of CuO particles were highly dispersed on the SBA-15 support. It was found that the CuO particles could reduce the gold (Au) particle size, stabilize the Au particles, and facilitate the activation of molecular oxygen. Although this catalyst is extremely active for the PROX reaction at room temperature and superior to the Au/SBA-15 and CuO/SBA-15 catalysts, it deactivates easily. Clear experimental evidence showed that CuO was reduced to Cu2O and Cu in the reductive reaction gas mixture, and the Cu further combined/dissolved into the Au particles during the reaction. The alloying of Au and Cu not only decreased the catalytic activity of the Au particles but also reduced the ability of CuO to activate molecular oxygen. Fortunately, this alloying process could be reversed via a simple calcination in air to activate the catalyst. The identification of the catalyst structural evolution and this new contributing factor toward the deactivation of the Au catalysts has provided insights into the field of Au catalysis.
引用
收藏
页码:360 / 369
页数:10
相关论文
共 40 条
[1]   Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen [J].
Alayoglu, Selim ;
Nilekar, Anand U. ;
Mavrikakis, Manos ;
Eichhorn, Bryan .
NATURE MATERIALS, 2008, 7 (04) :333-338
[2]   Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction [J].
Bauer, J. Chris ;
Mullins, David ;
Li, Meijun ;
Wu, Zili ;
Payzant, E. Andrew ;
Overbury, Steven H. ;
Dai, Sheng .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (07) :2571-2581
[3]   Design of a surface alloy catalyst for steam reforming [J].
Besenbacher, F ;
Chorkendorff, I ;
Clausen, BS ;
Hammer, B ;
Molenbroek, AM ;
Norskov, JK ;
Stensgaard, I .
SCIENCE, 1998, 279 (5358) :1913-1915
[4]   Chemoselective hydrogenation of nitro compounds with supported gold catalysts [J].
Corma, Avelino ;
Serna, Pedro .
SCIENCE, 2006, 313 (5785) :332-334
[5]   On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3 [J].
Costello, CK ;
Yang, JH ;
Law, HY ;
Wang, Y ;
Lin, JN ;
Marks, LD ;
Kung, MC ;
Kung, HH .
APPLIED CATALYSIS A-GENERAL, 2003, 243 (01) :15-24
[6]   FORMATION OF C-2 OXYGENATES ON RHODIUM-CONTAINING CATALYSTS DURING CO+H-2 REACTIONS - FTIR STUDY OF ACETALDEHYDE ADSORPTION [J].
DEMRI, D ;
HINDERMANN, JP ;
DIAGNE, C ;
KIENNEMANN, A .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1994, 90 (03) :501-506
[7]   VEGARD LAW [J].
DENTON, AR ;
ASHCROFT, NW .
PHYSICAL REVIEW A, 1991, 43 (06) :3161-3164
[8]   Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts [J].
Enache, DI ;
Edwards, JK ;
Landon, P ;
Solsona-Espriu, B ;
Carley, AF ;
Herzing, AA ;
Watanabe, M ;
Kiely, CJ ;
Knight, DW ;
Hutchings, GJ .
SCIENCE, 2006, 311 (5759) :362-365
[9]   Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO2 Catalyst [J].
Green, Isabel Xiaoye ;
Tang, Wenjie ;
Neurock, Matthew ;
Yates, John T., Jr. .
SCIENCE, 2011, 333 (6043) :736-739
[10]   A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts [J].
Grisel, RJH ;
Neiuwenhuys, BE .
CATALYSIS TODAY, 2001, 64 (1-2) :69-81