Determination of antimony in water samples by hydride generation coupled with atmospheric pressure glow discharge atomic emission spectrometry

被引:31
作者
Zhu, Zhenli [1 ]
Yang, Chun [1 ]
Yu, Peiwen [1 ]
Zheng, Hongtao [2 ]
Liu, Zhifu [1 ]
Xing, Zhi [3 ]
Hu, Shenghong [1 ]
机构
[1] China Univ Geosci, Sch Earth Sci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Hubei, Peoples R China
[2] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Hubei, Peoples R China
[3] Tsinghua Univ, Dept Chem, Beijing Key Lab Microanalyt Methods & Instrumenta, Beijing 10084, Peoples R China
基金
中国国家自然科学基金;
关键词
DIELECTRIC BARRIER DISCHARGE; FLOWING LIQUID CATHODE; EXCITATION SOURCE; VAPOR GENERATION; MICROPLASMA; MERCURY; PRECONCENTRATION; TRACE; SB; CHROMATOGRAPHY;
D O I
10.1039/c8ja00271a
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A low power (similar to 10 W), miniaturized atmospheric pressure glow discharge (APGD) source sustained between a tungsten cathode and a titanium tube anode was coupled with a hydride generation (HG) system for sensitive determination of antimony in water samples with atomic emission spectrometry (AES). Sb ions were converted into volatile hydrides through the reaction with KBH4 firstly and then were introduced into the APGD source for excitation and detected using a compact CCD (charge-coupled device) microspectrometer. A univariate approach was used to achieve optimized conditions and derive analytical figures of merit. Under optimal conditions, the limits of detection and quantification for Sb were 0.14 and 0.5 mg L-1, respectively. Moreover, the HG-APGD-AES system offered good repeatability (relative standard deviation <1.5%). The calibration curve was linear in the range between 0.5 and 100 mg L-1, with a correlation coefficient of R-2 = 0.9996. The proposed method was successfully applied to the determination of certified reference materials (GSB 07-1376-2001, GBW07305a, GBW07307a and GBW073066) and some groundwater samples. Recoveries of Sb added to these water samples were within 90.9-100.7%, proving the good accuracy of the HG-APGD-AES method.
引用
收藏
页码:331 / 337
页数:7
相关论文
共 50 条
  • [41] Application of Microwave Plasma Atomic Emission Spectrometry and Hydride Generation for Determination of Arsenic and Selenium in Mineral Water
    Mikheev, I. V.
    Karpukhina, E. A.
    Usol'tseva, L. O.
    Samarina, T. O.
    Volkov, D. S.
    Proskurnin, M. A.
    INORGANIC MATERIALS, 2017, 53 (14) : 1422 - 1426
  • [42] Strategies of sample preparation for speciation analysis of inorganic antimony using hydride generation atomic spectrometry
    Ferreira, Sergio L. C.
    dos Santos, Walter N. L.
    dos Santos, Ivanice F.
    Junior, Mario M. S.
    Silva, Laiana O. B.
    Barbosa, Uenderson A.
    de Santana, Fernanda A.
    Queiroz, Antonio F. de S.
    MICROCHEMICAL JOURNAL, 2014, 114 : 22 - 31
  • [43] On the coupling of hydride generation (HG) with flowing liquid anode atmospheric pressure glow discharge (FLA-APGD) for determination of traces of As, Bi, Hg, Sb and Se by optical emission spectrometry (OES)
    Gorska, Monika
    Greda, Krzysztof
    Pohl, Pawel
    TALANTA, 2021, 222
  • [44] Solution anode glow discharge optical emission spectrometry: Volatile hydride introduction from the gas jet nozzle cathode for ultrasensitive determination of
    Peng, Xiaoxu
    Zhao, Mingyue
    Yuan, Mingli
    Wang, Zheng
    TALANTA, 2021, 225
  • [45] Development of a MSFIA system for sequential determination of antimony, arsenic and selenium using hydride generation atomic fluorescence spectrometry
    de Santana, Fernanda A.
    Portugal, Lindomar A.
    Serra, Antonio M.
    Ferrer, Laura
    Cerda, Victor
    Ferreira, Sergio L. C.
    TALANTA, 2016, 156 : 29 - 33
  • [46] Development of an analytical method for the determination of arsenic in gasoline samples by hydride generation-graphite furnace atomic absorption spectrometry
    Becker, Emilene M.
    Dessuy, Morgana B.
    Boschetti, Wiliam
    Vale, Maria Goreti R.
    Ferreira, Sergio L. C.
    Welz, Bernhard
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2012, 71-72 : 102 - 106
  • [47] Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry
    Menemenlioglu, Ipek
    Korkmaz, Deniz
    Ataman, O. Yavuz
    SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2007, 62 (01) : 40 - 47
  • [48] Solution cathode glow discharge induced vapor generation of iodine for determination by inductively coupled plasma optical emission spectrometry
    Zhu, Zhenli
    He, Qian
    Shuai, Qin
    Zheng, Hongtao
    Hu, Shenghong
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 2010, 25 (09) : 1390 - 1394
  • [49] Liquid Cathode Glow Discharge as a Microplasma Excitation Source for Atomic Emission Spectrometry for the Determination of Trace Heavy Metals in Ore Samples
    Yu, Jie
    Zhu, Shuwen
    Lu, Quanfang
    Zhang, Zhichao
    Sun, Duixiong
    Zhang, Xiaomin
    Wang, Xing
    Yang, Wu
    ANALYTICAL LETTERS, 2018, 51 (13) : 2128 - 2140
  • [50] DETERMINATION OF LEAD IN SEA-WATER BY INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION-SPECTROMETRY COMBINED WITH CHELATING RESIN PRECONCENTRATION AND HYDRIDE GENERATION
    REIMER, RA
    MIYAZAKI, A
    JOURNAL OF ANALYTICAL ATOMIC SPECTROMETRY, 1992, 7 (08) : 1239 - 1242