Method of adaptive artificial viscosity for solving the Navier-Stokes equations

被引:1
|
作者
Popov, I. V. [1 ,2 ]
Fryazinov, I. V. [1 ]
机构
[1] Russian Acad Sci, Inst Appl Math, Moscow 125047, Russia
[2] Natl Res Nucl Univ MEPhI, Moscow 115409, Russia
基金
俄罗斯基础研究基金会;
关键词
difference scheme; Navier-Stokes equations; adaptive artificial viscosity; numerical method;
D O I
10.1134/S096554251508014X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A numerical technique based on the method of adaptive artificial viscosity is proposed for solving the viscous compressible Navier-Stokes equations in two dimensions. The Navier-Stokes equations is approximated on unstructured meshes, namely, on triangular or tetrahedral elements. The monotonicity of the difference scheme according to the Friedrichs criterion is achieved by adding terms with adaptive artificial viscosity to the scheme. The adaptive artificial viscosity is determined by satisfying the maximum principle conditions. An external flow around a cylinder at various Reynolds numbers is computed as a numerical experiment.
引用
收藏
页码:1324 / 1329
页数:6
相关论文
共 50 条
  • [41] FRACTIONAL NAVIER-STOKES EQUATIONS
    Cholewa, Jan W.
    Dlotko, Tomasz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (08): : 2967 - 2988
  • [42] Euler and Navier-Stokes equations
    Constantin, Peter
    PUBLICACIONS MATEMATIQUES, 2008, 52 (02) : 235 - 265
  • [43] STOCHASTIC NAVIER-STOKES EQUATIONS
    BENSOUSSAN, A
    ACTA APPLICANDAE MATHEMATICAE, 1995, 38 (03) : 267 - 304
  • [44] Stabilization of Navier-Stokes Equations
    Barbu, Viorel
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2): : 107 - 116
  • [45] Navier-Stokes equations with delays
    Caraballo, T
    Real, J
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2014): : 2441 - 2453
  • [46] On modifications of the Navier-Stokes equations
    Kobelkov, Georgij M.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2015, 30 (02) : 87 - 93
  • [47] NONLINEAR GALERKIN METHOD FOR THE EXTERIORNONSTATIONARY NAVIER-STOKES EQUATIONS
    何银年
    李开泰
    Applied Mathematics and Mechanics(English Edition), 2002, (11) : 1282 - 1291
  • [48] A Low-Rank Solver for the Navier-Stokes Equations with Uncertain Viscosity
    Lee, Kookjin
    Elman, Howard C.
    Sousedik, Bedrich
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (04): : 1275 - 1300
  • [49] Central Discontinuous Galerkin Method for the Navier-Stokes Equations
    Tan Ren
    Chao Wang
    Haining Dong
    Danjie Zhou
    JournalofBeijingInstituteofTechnology, 2017, 26 (02) : 158 - 164
  • [50] A hybrid mixed method for the compressible Navier-Stokes equations
    Schuetz, Jochen
    May, Georg
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 240 : 58 - 75