Spatial development of transport structures in apple (Malus x domestica Borkh.) fruit

被引:40
|
作者
Herremans, Els [1 ]
Verboven, Pieter [1 ]
Hertog, Maarten L. A. T. M. [1 ]
Cantre, Dennis [1 ]
van Dael, Mattias [1 ]
De Schryver, Thomas [2 ]
Van Hoorebeke, Luc [2 ]
Nicolai, Bart M. [1 ,3 ]
机构
[1] Univ Leuven, KU Leuven, Dept Biosyst, Div MeBioS, Leuven, Belgium
[2] Univ Ghent, Dept Phys & Astron, UGCT Radiat Phys, B-9000 Ghent, Belgium
[3] Flanders Ctr Postharvest Technol, Leuven, Belgium
来源
关键词
growth model; microtomography; gas and water transport; vascular system; programmed cell death; PROGRAMMED CELL-DEATH; ARABIDOPSIS-THALIANA; GAS-EXCHANGE; RAY CT; XYLEM; QUANTIFICATION; AUXIN; VISUALIZATION; MODEL; MICROSTRUCTURE;
D O I
10.3389/fpls.2015.00679
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The void network and vascular system are important pathways for the transport of gases, water and solutes in apple fruit (Malus x domestica Borkh). Here we used X-ray micro-tomography at various spatial resolutions to investigate the growth of these transport structures in 3D during fruit development of "Jonagold" apple. The size of the void space and porosity in the cortex tissue increased considerably. In the core tissue, the porosity was consistently lower, and seemed to decrease toward the end of the maturation period. The voids in the core were more narrow and fragmented than the voids in the cortex. Both the void network in the core and in the cortex changed significantly in terms of void morphology. An automated segmentation protocol underestimated the total vasculature length by 9-12% in comparison to manually processed images. Vascular networks increased in length from a total of 5 m at 9 weeks after full bloom, to more than 20 m corresponding to 5 cm of vascular tissue per cubic centimeter of apple tissue. A high degree of branching in both the void network and vascular system and a complex three-dimensional pattern was observed across the whole fruit. The 3D visualizations of the transport structures may be useful for numerical modeling of organ growth and transport processes in fruit.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Re-Visiting Calcium Concentration and Distribution in Apple Fruit (Malus Domestica Borkh.)
    Lotze, Elmi
    Wilsdorf, Robert
    Turketti, Sandy
    Przybylowiczd, Wojciech Jozef
    Mesjasz-Przybylowiczd, Jolanta
    JOURNAL OF PLANT NUTRITION, 2015, 38 (10) : 1469 - 1477
  • [42] Structures and functional properties of apple (Malus domestica Borkh) fruit starch
    Stevenson, DG
    Domoto, PA
    Jane, JL
    CARBOHYDRATE POLYMERS, 2006, 63 (03) : 432 - 441
  • [43] Creating a saturated reference map for the apple (Malus x domestica Borkh.) genome
    Liebhard, R.
    Koller, B.
    Gianfranceschi, L.
    Gessler, C.
    THEORETICAL AND APPLIED GENETICS, 2003, 106 (08) : 1497 - 1508
  • [44] The effect of transporter genes on zinc stress in apple (Malus x domestica Borkh.)
    Swietlik, D.
    Vann, C.
    Wisniewski, M.
    Artlip, T.
    Norelli, J. L.
    Kochian, L.
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON BIOTECHNOLOGY OF TEMPERATE FRUIT CROPS AND TROPICAL SPECIES, 2007, (738): : 345 - +
  • [45] Predicting branching in young apple trees (Malus domestica Borkh.)
    Lindhagen, M
    SECOND INTERNATIONAL SYMPOSIUM ON MODELS FOR PLANT GROWTH, ENVIRONMENTAL CONTROL AND FARM MANAGEMENT IN PROTECTED CULTIVATION, 1998, (456): : 125 - 131
  • [46] Molecular characterization of newS-RNases (‘S31’ and ‘S32’) in apple (Malus ×domestica Borkh.)’) in apple (Malus ×domestica Borkh.)
    Hoytaek Kim
    Jongin Park
    Yutaka Hirata
    Illsup Nou
    Journal of Plant Biology, 2008, 51 : 202 - 208
  • [47] Metabolic Engineering of Flavonoid Biosynthesis in Apple (Malus domestica Borkh.)
    Szankowski, I.
    Li, H.
    Flachowsky, H.
    Hoefer, M.
    Hanke, M. -V.
    Fischer, T.
    Forkmann, G.
    Treutter, D.
    Schwab, W.
    Hoffmann, T.
    XII EUCARPIA SYMPOSIUM ON FRUIT BREEDING AND GENETICS, 2009, 814 : 511 - 516
  • [48] Functional markers as genetic approach to study ethylene production and fruit softening in apple (Malus x domestica Borkh.)
    Costa, F
    Stella, S
    Sansavini, S
    Van de Weg, WE
    Proceedings of the 5th International Postharvest Symposium, Vols 1-3, 2005, (682): : 389 - 393
  • [49] Higher growth of the apple (Malus x domestica Borkh.) fruit cortex is supported by resource intensive metabolism during early development
    Jing, Shan
    Malladi, Anish
    BMC PLANT BIOLOGY, 2020, 20 (01)
  • [50] Mapping quantitative physiological traits in apple (Malus × domestica Borkh.)
    R. Liebhard
    M. Kellerhals
    W. Pfammatter
    M. Jertmini
    C. Gessler
    Plant Molecular Biology, 2003, 52 : 511 - 526