Quasi-optimal convergence rate for an adaptive finite element method

被引:383
作者
Cascon, J. Manuel [1 ]
Kreuzer, Christian [2 ]
Nochetto, Ricardo H. [3 ,4 ]
Siebert, Kunibert G. [2 ]
机构
[1] Univ Salamanca, Dept Matemat, E-37008 Salamanca, Spain
[2] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
error reduction; convergence; optimal cardinality; adaptive algorithm;
D O I
10.1137/07069047X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the simplest and most standard adaptive finite element method (AFEM), with any polynomial degree, for general second order linear, symmetric elliptic operators. As is customary in practice, the AFEM marks exclusively according to the error estimator and performs a minimal element refinement without the interior node property. We prove that the AFEM is a contraction, for the sum of the energy error and the scaled error estimator, between two consecutive adaptive loops. This geometric decay is instrumental to derive the optimal cardinality of the AFEM. We show that the AFEM yields a decay rate of the energy error plus oscillation in terms of the number of degrees of freedom as dictated by the best approximation for this combined nonlinear quantity.
引用
收藏
页码:2524 / 2550
页数:27
相关论文
共 27 条
[1]  
[Anonymous], POSTERIORI ERROR EST
[2]  
Bansch E., 1991, Impact of Computing in Science and Engineering, V3, P181, DOI 10.1016/0899-8248(91)90006-G
[3]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[4]  
BINEV P, 2002, SERDICA MATH J, V28, P1001
[5]  
Cascon J. M., QUASI OPTIMAL UNPUB
[6]   An adaptive finite element algorithm with reliable and efficient error control for linear parabolic problems [J].
Chen, ZM ;
Feng, J .
MATHEMATICS OF COMPUTATION, 2004, 73 (247) :1167-1193
[7]   Linear convergence of an adaptive finite element method for the p-Laplacian equation [J].
Diening, Lars ;
Kreuzer, Christian .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :614-638
[8]   A convergent adaptive algorithm for Poisson's equation [J].
Dorfler, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1106-1124
[9]  
Gilbarg D., 1998, Elliptic Partial Differential Equations of Second Order, V2nd ed.
[10]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24