Combination of Nano-Hydroxyapatite with Stem Cells for Bone Tissue Engineering

被引:29
|
作者
Venkatesan, Jayachandran [1 ]
Lowe, Baboucarr [2 ,3 ]
Anil, Sukumaran [4 ]
Kim, Se-Kwon [2 ,3 ]
Shim, Min Suk [1 ]
机构
[1] Lncheon Natl Univ, Div Bioengn, Inchon 406772, South Korea
[2] Pukyong Natl Univ, Marine Bioproc Res Ctr, Busan 608737, South Korea
[3] Pukyong Natl Univ, Dept Marine Bioconvergence Sci, Busan 608737, South Korea
[4] Jazan Univ, Coll Dent, POB 114, Jazan 45142, Saudi Arabia
基金
新加坡国家研究基金会;
关键词
Biomaterials; Scaffolds; Tissue Regeneration; Polymers; Nanotechnology; HUMAN TRABECULAR BONE; GROWTH-FACTOR DELIVERY; HUMAN ADIPOSE-TISSUE; HUMAN UC BLOOD; OF-THE-ART; OSTEOGENIC DIFFERENTIATION; IN-VITRO; COMPOSITE SCAFFOLDS; CHONDROGENIC DIFFERENTIATION; OSTEOBLAST DIFFERENTIATION;
D O I
10.1166/jnn.2016.12730
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tissue engineering seeks to exploit functional biomaterials and engineer them to serve as artificial templates that promote the regeneration of tissues and damaged organs. Engineered scaffold materials recapitulate the extracellular matrix and provide cells with information essential for tissue development. Nanotechnologies make use of the material at the nanoscale for targeted interactions at molecular levels and deliver biochemical cues for cell growth required for tissue formation. In bone tissue engineering, nano-hydroxyapatite (nHA), which is a calcium phosphate-based material, is extensively used as a bone defect substitute to mimic the natural bioceramic portion of bone. nHA can be functionalized in the form of composite scaffolds along with other polymers, ceramic, and growth factors to enable bone tissue regeneration. In addition, the material directs stem cell differentiation into specific lineages. This stem cell-based therapy is a prominent approach in organ development and tissue regeneration. Here, we examine nHA interactions with stem cells in the form of designed scaffolds and offer important considerations about the fundamental challenges and prospects for its application in bone tissue engineering.
引用
收藏
页码:8881 / 8894
页数:14
相关论文
共 50 条
  • [21] Laser-treated electrospun fibers loaded with nano-hydroxyapatite for bone tissue engineering
    Aragon, Javier
    Navascues, Nuria
    Mendoza, Gracia
    Irusta, Silvia
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2017, 525 (01) : 112 - 122
  • [22] Synthesis and characterization of a nano-hydroxyapatite/chitosan/polyethylene glycol nanocomposite for bone tissue engineering
    Shakir, Mohammad
    Jolly, Reshma
    Khan, Mohd Shoeb
    Iram, Noor-E
    Sharma, Tarun Kumar
    Al-Resayes, Saud Ibrahim
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2015, 26 (01) : 41 - 48
  • [23] The Effect of Boron-Containing Nano-Hydroxyapatite on Bone Cells
    Gizer, Merve
    Kose, Sevil
    Karaosmanoglu, Beren
    Taskiran, Ekim Z.
    Berkkan, Aysel
    Timucin, Muharrem
    Korkusuz, Feza
    Korkusuz, Petek
    BIOLOGICAL TRACE ELEMENT RESEARCH, 2020, 193 (02) : 364 - 376
  • [24] A novel two-step sintering for nano-hydroxyapatite scaffolds for bone tissue engineering
    Feng, Pei
    Niu, Man
    Gao, Chengde
    Peng, Shuping
    Shuai, Cijun
    SCIENTIFIC REPORTS, 2014, 4
  • [25] A simple polysaccharide based injectable hydrogel compositing nano-hydroxyapatite for bone tissue engineering
    Cao, Zhen
    Bai, Xiao
    Wang, Chongbin
    Ren, Liling
    Ma, Dongyang
    MATERIALS LETTERS, 2021, 293
  • [26] Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering
    Lowe, Baboucarr
    Venkatesan, Jayachandran
    Anil, Sukumaran
    Shim, Min Suk
    Kim, Se-Kwon
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 93 : 1479 - 1487
  • [27] Stem cells in bone tissue engineering
    Seong, Jeong Min
    Kim, Byung-Chul
    Park, Jae-Hong
    Kwon, Il Keun
    Mantalaris, Anathathios
    Hwang, Yu-Shik
    BIOMEDICAL MATERIALS, 2010, 5 (06)
  • [28] Nano-Hydroxyapatite/Polymer Composite as Bone Repair Materials
    Liao Jianguo
    Li Yanqun
    Duan Xingze
    Zhu Lingli
    PROGRESS IN CHEMISTRY, 2015, 27 (2-3) : 220 - 228
  • [29] Bone tissue engineering: Adult stem cells in combination with electrospun nanofibrous scaffolds
    Moradi, Sadegh L.
    Golchin, Ali
    Hajishafieeha, Zahra
    Khani, Mohammad-Mehdi
    Ardeshirylajimi, Abdolreza
    JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (10) : 6509 - 6522
  • [30] The combination of a poly-caprolactone/nano-hydroxyapatite honeycomb scaffold and mesenchymal stem cells promotes bone regeneration in rat calvarial defects
    Naudot, Marie
    Garcia Garcia, Alejandro
    Jankovsky, Nicolas
    Barre, Anais
    Zabijak, Luciane
    Azdad, Soufiane Zakaria
    Collet, Louison
    Bedoui, Fahmi
    Hebraud, Anne
    Schlatter, Guy
    Devauchelle, Bernard
    Marolleau, Jean-Pierre
    Legallais, Cecile
    Le Ricousse, Sophie
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 14 (11) : 1570 - 1580