Counting weak Heyting algebras on finite distributive lattices

被引:3
|
作者
Alizadeh, Majid [1 ]
Joharizadeh, Nima [1 ]
机构
[1] Univ Tehran, Stat & Comp Sci, Coll Sci, Tehran, Iran
关键词
Subintuitionistic logic; distributive lattice; weak Heyting algebra; Visser algebra; Lob algebra; Heyting algebra;
D O I
10.1093/jigpal/jzu033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Weak Heyting algebras (Celani and Jansana, 2005, Math. Log. Quart., 51, 219-246) encompass subvarieties of the variety of Heyting algebras and subvarieties of the variety of modal algebras, modulo an appropriate translation. In this article, we present an algorithm to construct and count all non-isomorphic weak Heyting algebras, weak Heyting algebras that are Visser algebras and Lob algebras on a given finite distributive lattice.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 50 条
  • [31] Computable Isomorphisms of Distributive Lattices
    Bazhenov, Nikolay
    Mustafa, Manat
    Yamaleev, Mars
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2019, 2019, 11436 : 28 - 41
  • [32] THE SEMIRING VARIETY GENERATED BY ANY FINITE NUMBER OF FINITE FIELDS AND DISTRIBUTIVE LATTICES
    Shao, Yong
    Ren, Miaomiao
    Crvenkovic, Sinisa
    Mitrovic, Melanija
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2015, 98 (112): : 45 - 51
  • [33] Finite distributive lattices which are isomorphic to direct products of chains
    S. Lavanya
    S. Parameshwara Bhatta
    algebra universalis, 1997, 37 : 448 - 457
  • [34] MacNeille transferability and stable classes of Heyting algebras
    Guram Bezhanishvili
    John Harding
    Julia Ilin
    Frederik Möllerström Lauridsen
    Algebra universalis, 2018, 79
  • [35] MacNeille transferability and stable classes of Heyting algebras
    Bezhanishvili, Guram
    Harding, John
    Ilin, Julia
    Lauridsen, Frederik Mollerstrom
    ALGEBRA UNIVERSALIS, 2018, 79 (03)
  • [36] Pseudo-polynomial functions over finite distributive lattices
    Couceiro, Miguel
    Waldhauser, Tamas
    FUZZY SETS AND SYSTEMS, 2014, 239 : 21 - 34
  • [37] Finite distributive lattices which are isomorphic to direct products of chains
    Lavanya, S
    Bhatta, SP
    ALGEBRA UNIVERSALIS, 1997, 37 (04) : 448 - 457
  • [38] MV and Heyting effect algebras
    Foulis, DJ
    FOUNDATIONS OF PHYSICS, 2000, 30 (10) : 1687 - 1706
  • [39] Endomorphisms of complete heyting algebras
    A. Pultr
    J. Sichler
    Semigroup Forum, 1997, 54 : 364 - 374
  • [40] MV and Heyting Effect Algebras
    D. J. Foulis
    Foundations of Physics, 2000, 30 : 1687 - 1706