Genome-Wide Identification, Evolutionary Expansion, and Expression Profile of Homeodomain-Leucine Zipper Gene Family in Poplar (Populus trichocarpa)

被引:81
|
作者
Hu, Ruibo [1 ]
Chi, Xiaoyuan [2 ]
Chai, Guohua [1 ]
Kong, Yingzhen [3 ]
He, Guo [1 ]
Wang, Xiaoyu [1 ]
Shi, Dachuan [1 ]
Zhang, Dongyuan [1 ]
Zhou, Gongke [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst BioEnergy & BioProc Technol, Shandong Prov Key Lab Energy Genet, CAS Key Lab Biofuels, Qingdao, Shandong, Peoples R China
[2] Shandong Peanut Res Inst, Qingdao, Shandong, Peoples R China
[3] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA
来源
PLOS ONE | 2012年 / 7卷 / 02期
基金
中国国家自然科学基金;
关键词
MICRORNA-DIRECTED CLEAVAGE; CLASS IIIHD-ZIP; HD-ZIP; HOMEOBOX GENE; ARABIDOPSIS-THALIANA; TRANSCRIPTION FACTORS; WATER-DEFICIT; CELL-DIFFERENTIATION; LEAF DEVELOPMENT; MICROARRAY DATA;
D O I
10.1371/journal.pone.0031149
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus far. Principal Findings: In this study, a comprehensive analysis of Populus HD-ZIP gene family was performed. Sixty-three full-length HD-ZIP genes were found in Populus genome. These Populus HD-ZIP genes were phylogenetically clustered into four distinct subfamilies (HD-ZIP I-IV) and predominately distributed across 17 linkage groups (LG). Fifty genes from 25 Populus paralogous pairs were located in the duplicated blocks of Populus genome and then preferentially retained during the sequential evolutionary courses. Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus HD-ZIP gene family. Microarray analysis has shown that 21 Populus paralogous pairs have been differentially expressed across different tissues and under various stresses, with five paralogous pairs showing nearly identical expression patterns, 13 paralogous pairs being partially redundant and three paralogous pairs diversifying significantly. Quantitative real-time RT-PCR (qRT-PCR) analysis performed on 16 selected Populus HD-ZIP genes in different tissues and under both drought and salinity stresses confirms their tissue-specific and stress-inducible expression patterns. Conclusions: Genomic organizations indicated that segmental duplications contributed significantly to the expansion of Populus HD-ZIP gene family. Exon/intron organization and conserved motif composition of Populus HD-ZIPs are highly conservative in the same subfamily, suggesting the members in the same subfamilies may also have conservative functionalities. Microarray and qRT-PCR analyses showed that 89% (56 out of 63) of Populus HD-ZIPs were duplicate genes that might have been retained by substantial subfunctionalization. Taken together, these observations may lay the foundation for future functional analysis of Populus HD-ZIP genes to unravel their biological roles.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Genome-wide identification and expression analyses of homeodomain-leucine zipper family genes reveal their involvement in stress response in apple (Malus ? domestica)
    Zhang, Quanyan
    Chen, Tao
    Wang, Xun
    Wang, Jiahui
    Gu, Kaidi
    Yu, Jianqiang
    Hu, Dagang
    Hao, Yujin
    HORTICULTURAL PLANT JOURNAL, 2022, 8 (03) : 261 - 278
  • [12] Genome-wide identification and expression analysis of EPF/EPFL gene family in Populus trichocarpa
    Liu, Sha
    Chen, Ting
    Li, Xin
    Cui, Junjun
    Tian, Yinshuai
    FRONTIERS IN GENETICS, 2024, 15
  • [13] Genome-wide identification and expression profiling of the copper transporter gene family in Populus trichocarpa
    Zhang, Haizhen
    Yang, Jingli
    Wang, Weida
    Li, Dandan
    Hu, Xiaoqing
    Wang, Han
    Wei, Ming
    Liu, Quangang
    Wang, Zhanchao
    Li, Chenghao
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2015, 97 : 451 - 460
  • [14] Genome-wide identification and characterization of the cyclin gene family in Populus trichocarpa
    Dong, Qing
    Zhao, Yang
    Jiang, Haiyang
    He, Hongsheng
    Zhu, Suwen
    Cheng, Beijiu
    Xiang, Yan
    PLANT CELL TISSUE AND ORGAN CULTURE, 2011, 107 (01) : 55 - 67
  • [15] Genome-wide identification and characterization of the cyclin gene family in Populus trichocarpa
    Qing Dong
    Yang Zhao
    Haiyang Jiang
    Hongsheng He
    Suwen Zhu
    Beijiu Cheng
    Yan Xiang
    Plant Cell, Tissue and Organ Culture (PCTOC), 2011, 107 : 55 - 67
  • [16] Genome-wide identification and analysis of the Populus trichocarpa TIFY gene family
    Wang, Yue
    Pan, Feng
    Chen, Danmei
    Chu, Wenyuan
    Liu, Huanlong
    Xiang, Yan
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2017, 115 : 360 - 371
  • [17] Characterization of homeodomain-leucine zipper genes in the fern Ceratopteris richardii and the evolution of the homeodomain-leucine zipper gene family in vascular plants
    Aso, K
    Kato, M
    Banks, JA
    Hasebe, M
    MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (04) : 544 - 552
  • [18] Genome-wide Classification, Identification and Expression Profile of the C3HC4-type RING Finger Gene Family in Poplar (Populus trichocarpa)
    Liu, Quangang
    Yang, Jingli
    Wang, Zhanchao
    Xu, Xuemei
    Mao, Xuliang
    Li, Dandan
    Hu, Xiaoqing
    Jin, Dongchun
    Li, Chenghao
    PLANT MOLECULAR BIOLOGY REPORTER, 2015, 33 (06) : 1740 - 1754
  • [19] Genome-wide Classification, Identification and Expression Profile of the C3HC4-type RING Finger Gene Family in Poplar (Populus trichocarpa)
    Quangang Liu
    Jingli Yang
    Zhanchao Wang
    Xuemei Xu
    Xuliang Mao
    Dandan Li
    Xiaoqing Hu
    Dongchun Jin
    Chenghao Li
    Plant Molecular Biology Reporter, 2015, 33 : 1740 - 1754
  • [20] Genome-wide identification and expression profile analysis of CCH gene family in Populus
    Xu, Zhiru
    Gao, Liying
    Tang, Mengquan
    Qu, Chunpu
    Huang, Jiahuan
    Wang, Qi
    Yang, Chuanping
    Liu, Guanjun
    Yang, Chengjun
    PEERJ, 2017, 5