Genome-Wide Identification, Evolutionary Expansion, and Expression Profile of Homeodomain-Leucine Zipper Gene Family in Poplar (Populus trichocarpa)

被引:81
作者
Hu, Ruibo [1 ]
Chi, Xiaoyuan [2 ]
Chai, Guohua [1 ]
Kong, Yingzhen [3 ]
He, Guo [1 ]
Wang, Xiaoyu [1 ]
Shi, Dachuan [1 ]
Zhang, Dongyuan [1 ]
Zhou, Gongke [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst BioEnergy & BioProc Technol, Shandong Prov Key Lab Energy Genet, CAS Key Lab Biofuels, Qingdao, Shandong, Peoples R China
[2] Shandong Peanut Res Inst, Qingdao, Shandong, Peoples R China
[3] Univ Georgia, Complex Carbohydrate Res Ctr, Athens, GA 30602 USA
来源
PLOS ONE | 2012年 / 7卷 / 02期
基金
中国国家自然科学基金;
关键词
MICRORNA-DIRECTED CLEAVAGE; CLASS IIIHD-ZIP; HD-ZIP; HOMEOBOX GENE; ARABIDOPSIS-THALIANA; TRANSCRIPTION FACTORS; WATER-DEFICIT; CELL-DIFFERENTIATION; LEAF DEVELOPMENT; MICROARRAY DATA;
D O I
10.1371/journal.pone.0031149
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Homeodomain-leucine zipper (HD-ZIP) proteins are plant-specific transcriptional factors known to play crucial roles in plant development. Although sequence phylogeny analysis of Populus HD-ZIPs was carried out in a previous study, no systematic analysis incorporating genome organization, gene structure, and expression compendium has been conducted in model tree species Populus thus far. Principal Findings: In this study, a comprehensive analysis of Populus HD-ZIP gene family was performed. Sixty-three full-length HD-ZIP genes were found in Populus genome. These Populus HD-ZIP genes were phylogenetically clustered into four distinct subfamilies (HD-ZIP I-IV) and predominately distributed across 17 linkage groups (LG). Fifty genes from 25 Populus paralogous pairs were located in the duplicated blocks of Populus genome and then preferentially retained during the sequential evolutionary courses. Genomic organization analyses indicated that purifying selection has played a pivotal role in the retention and maintenance of Populus HD-ZIP gene family. Microarray analysis has shown that 21 Populus paralogous pairs have been differentially expressed across different tissues and under various stresses, with five paralogous pairs showing nearly identical expression patterns, 13 paralogous pairs being partially redundant and three paralogous pairs diversifying significantly. Quantitative real-time RT-PCR (qRT-PCR) analysis performed on 16 selected Populus HD-ZIP genes in different tissues and under both drought and salinity stresses confirms their tissue-specific and stress-inducible expression patterns. Conclusions: Genomic organizations indicated that segmental duplications contributed significantly to the expansion of Populus HD-ZIP gene family. Exon/intron organization and conserved motif composition of Populus HD-ZIPs are highly conservative in the same subfamily, suggesting the members in the same subfamilies may also have conservative functionalities. Microarray and qRT-PCR analyses showed that 89% (56 out of 63) of Populus HD-ZIPs were duplicate genes that might have been retained by substantial subfunctionalization. Taken together, these observations may lay the foundation for future functional analysis of Populus HD-ZIP genes to unravel their biological roles.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Genome-wide identification and expression profile of homeodomain-leucine zipper Class I gene family in Cucumis sativus
    Liu, Wei
    Fu, Rao
    Li, Qiang
    Li, Jing
    Wang, Lina
    Ren, Zhonghai
    GENE, 2013, 531 (02) : 279 - 287
  • [2] Genome-wide identification and expression analyses of homeodomain-leucine zipper family genes reveal their involvement in stress response in apple (Malus ? domestica)
    Zhang, Quanyan
    Chen, Tao
    Wang, Xun
    Wang, Jiahui
    Gu, Kaidi
    Yu, Jianqiang
    Hu, Dagang
    Hao, Yujin
    HORTICULTURAL PLANT JOURNAL, 2022, 8 (03) : 261 - 278
  • [3] Genome-wide identification and expression profiling of EIL gene family in woody plant representative poplar (Populus trichocarpa)
    Filiz, Ertugrul
    Vatansever, Recep
    Ozyigit, Ibrahim Ilker
    Uras, Mehmet Emin
    Sen, Ugur
    Anjum, Naser A.
    Pereira, Eduarda
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2017, 627 : 30 - 45
  • [4] A genome-wide survey of homeodomain-leucine zipper genes and analysis of cold-responsive HD-Zip I members' expression in tomato
    Zhang, Zhenzhu
    Chen, Xiuling
    Guan, Xin
    Liu, Yang
    Chen, Hongyu
    Wang, Tingting
    Mouekouba, Liana Dalcantara Ongouya
    Li, Jingfu
    Wang, Aoxue
    BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 2014, 78 (08) : 1337 - 1349
  • [5] Genome-wide Classification, Identification and Expression Profile of the C3HC4-type RING Finger Gene Family in Poplar (Populus trichocarpa)
    Liu, Quangang
    Yang, Jingli
    Wang, Zhanchao
    Xu, Xuemei
    Mao, Xuliang
    Li, Dandan
    Hu, Xiaoqing
    Jin, Dongchun
    Li, Chenghao
    PLANT MOLECULAR BIOLOGY REPORTER, 2015, 33 (06) : 1740 - 1754
  • [6] The Arabidopsis Homeodomain-leucine Zipper II gene family: diversity and redundancy
    Angela Raffaella Ciarbelli
    Andrea Ciolfi
    Samanta Salvucci
    Valentino Ruzza
    Marco Possenti
    Monica Carabelli
    Alberto Fruscalzo
    Giovanna Sessa
    Giorgio Morelli
    Ida Ruberti
    Plant Molecular Biology, 2008, 68 : 465 - 478
  • [7] The Arabidopsis Homeodomain-leucine Zipper II gene family: diversity and redundancy
    Ciarbelli, Angela Raffaella
    Ciolfi, Andrea
    Salvucci, Samanta
    Ruzza, Valentino
    Possenti, Marco
    Carabelli, Monica
    Fruscalzo, Alberto
    Sessa, Giovanna
    Morelli, Giorgio
    Ruberti, Ida
    PLANT MOLECULAR BIOLOGY, 2008, 68 (4-5) : 465 - 478
  • [8] Genome-wide analysis of the homeodomain-leucine zipper family in Lotus japonicus and the overexpression of LjHDZ7 in Arabidopsis for salt tolerance
    Wang, Dan
    Gong, Yuan
    Li, Yang
    Nie, Shuming
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [9] Genome-Wide Identification and Expression Analysis of the HSF Gene Family in Poplar
    Zhao, Kai
    Dang, Hui
    Zhou, Lieding
    Hu, Jia
    Jin, Xia
    Han, Youzhi
    Wang, Shengji
    FORESTS, 2023, 14 (03):
  • [10] Knockdown of OsHox33, a member of the class III homeodomain-leucine zipper gene family, accelerates leaf senescence in rice
    Luan WeiJiang
    Shen Ao
    Jin ZhiPing
    Song SuSheng
    Li ZhengLong
    Sha AiHua
    SCIENCE CHINA-LIFE SCIENCES, 2013, 56 (12) : 1113 - 1123