Haggkvist-Hell graphs: A class of Kneser-colorable graphs

被引:0
|
作者
Roberson, David E. [1 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
关键词
Kneser graph; Automorphism; Independent set; Odd girth; Chromatic number; Triangle-free graph;
D O I
10.1016/j.disc.2011.10.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For positive integers n and r we define the Haggkvist-Hell graph, H-n:r, to be the graph whose vertices are the ordered pairs (h, T) where T is an r-subset of In I. and h is an element of I n not in T. Vertices (h(x), T-x) and (h(y), T-y) are adjacent iff h(x) is an element of T-y, h(y) is an element of T-x, and T-x boolean AND T-y = empty set. These triangle-free arc transitive graphs are an extension of the idea of Kneser graphs, and there is a natural homomorphism from the Haggkvist-Hell graph, H-n:r, to the corresponding Kneser graph, K-n:r. Haggkvist and Hell introduced the r = 3 case of these graphs, showing that a cubic graph admits a homomorphism to H-22:3 if and only if it is triangle-free. Gallucio, Hell, and Nesetril also considered the r = 3 case, proving that H-n:3 can have arbitrarily large chromatic number. In this paper we give the exact values for diameter, girth, and odd girth of all Haggkvist-Hell graphs, and we give bounds for independence, chromatic, and fractional chromatic number. Furthermore, we extend the result of Gallucio et al. to any fixed r >= 2, and we determine the full automorphism group of H-n:r, which is isomorphic to the symmetric group on n elements. (C) 2011 Elsevier BM. All rights reserved.
引用
收藏
页码:837 / 853
页数:17
相关论文
共 50 条
  • [41] Failed zero forcing numbers of Kneser graphs, Johnson graphs, and hypercubes
    Afzali, Fatemeh
    Ghodrati, Amir Hossein
    Maimani, Hamid Reza
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (03) : 2665 - 2675
  • [42] On the chromatic number of q-Kneser graphs
    A. Blokhuis
    A. E. Brouwer
    T. Szőnyi
    Designs, Codes and Cryptography, 2012, 65 : 187 - 197
  • [43] Neighbour-transitive codes in Kneser graphs
    Crnkovic, Dean
    Hawtin, Daniel R.
    Mostarac, Nina
    Svob, Andrea
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2024, 204
  • [44] On the chromatic number of some generalized Kneser graphs
    D'haeseleer, Jozefien
    Metsch, Klaus
    Werner, Daniel
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (04) : 179 - 204
  • [45] Total dominator chromatic number of Kneser graphs
    Jalilolghadr, Parvin
    Behtoei, Ali
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 52 - 56
  • [46] Cutoff phenomenon for random walks on Kneser graphs
    Pourmiri, Ali
    Sauerwald, Thomas
    DISCRETE APPLIED MATHEMATICS, 2014, 176 : 100 - 106
  • [47] On the chromatic number of q-Kneser graphs
    Blokhuis, A.
    Brouwer, A. E.
    Szonyi, T.
    DESIGNS CODES AND CRYPTOGRAPHY, 2012, 65 (03) : 187 - 197
  • [48] On total and edge coloring some Kneser graphs
    de Figueiredo, C. M. H.
    Patrao, C. S. R.
    Sasaki, D.
    Valencia-Pabon, M.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (01) : 119 - 135
  • [49] Grundy domination and zero forcing in Kneser graphs
    Bresar, Bostjan
    Kos, Tim
    Daniel Tones, Pablo
    ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 419 - 430
  • [50] On 4-colorable robust critical graphs
    Anderson, Mark
    Brigham, Robert
    Dutton, Ronald D.
    Vitray, Richard
    Yellen, Jay
    DISCRETE MATHEMATICS LETTERS, 2021, 6 : 54 - 59