We study the cover time of a random walk on the largest component of the random graph G(n,p). We determine its value up to a factor 1 + o(1) whenever np = c > 1, c = O(ln n). In particular, we show that the cover time is not monotone for c = Theta(ln n). We also determine the cover time of the k-cores, k >= 2. (c) 2008 Wiley Periodicals, Inc.
机构:
Univ Birmingham, Sch Math, Birmingham, W Midlands, EnglandUniv Birmingham, Sch Math, Birmingham, W Midlands, England
Joos, Felix
Perarnau, Guillem
论文数: 0引用数: 0
h-index: 0
机构:
Univ Birmingham, Sch Math, Birmingham, W Midlands, EnglandUniv Birmingham, Sch Math, Birmingham, W Midlands, England
Perarnau, Guillem
Rautenbach, Dieter
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ulm, Inst Optimizat & Operat Res, Ulm, GermanyUniv Birmingham, Sch Math, Birmingham, W Midlands, England
Rautenbach, Dieter
Reed, Bruce
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, Lab I3S, Sophia Antipolis, France
Natl Inst Informat, Kawarabayashi Large Graph ERATO Project, Tokyo, JapanUniv Birmingham, Sch Math, Birmingham, W Midlands, England
Reed, Bruce
2016 IEEE 57TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS),
2016,
: 695
-
703