Decay rates of the plate equations

被引:6
作者
Ammari, K [1 ]
Khenissi, M [1 ]
机构
[1] Fac Sci Monastir, Dept Math, Monastir 5019, Tunisia
关键词
decay rates; boundary stabilization; plate equations;
D O I
10.1002/mana.200310329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Kirchhoff plate equation and the Bemoulli-Euler plate equation. The energy decay rate in both cases is investigated. Moreover, when we do not have exponential stability in the energy space, we give explicit logarithmic decay estimates valid for regular initial data. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:1647 / 1658
页数:12
相关论文
共 14 条
[1]  
Ammari K, 2002, ASYMPTOTIC ANAL, V30, P117
[2]   Stabilization of second order evolution equations by a class of unbounded feedbacks [J].
Ammari, K ;
Tucsnak, M .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2001, 6 (14) :361-386
[3]   SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY [J].
BARDOS, C ;
LEBEAU, G ;
RAUCH, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) :1024-1065
[4]  
Chazarain J., 1981, Introduction a la theorie des equations aux derivees partielles lineaires
[5]   ASYMPTOTIC-BEHAVIOR WITH RESPECT TO THICKNESS OF BOUNDARY STABILIZING FEEDBACK FOR THE KIRCHOFF PLATE [J].
HORN, MA ;
LASIECKA, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 114 (02) :396-433
[6]   EXACT CONTROLLABILITY AND UNIFORM STABILIZATION OF KIRCHOFF PLATES WITH BOUNDARY CONTROL ONLY ON DELTA-W-SIGMA AND HOMOGENEOUS BOUNDARY DISPLACEMENT [J].
LASIECKA, I ;
TRIGGIANI, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) :62-101
[7]  
LASIECKA I, 1986, J MATH PURE APPL, V65, P149
[8]   A COSINE OPERATOR APPROACH TO MODELING L2(0,T=L2(GAMMA)) - BOUNDARY INPUT HYPERBOLIC-EQUATIONS [J].
LASIECKA, I ;
TRIGGIANI, R .
APPLIED MATHEMATICS AND OPTIMIZATION, 1981, 7 (01) :35-93
[9]  
LEBEAU G, 1992, J MATH PURE APPL, V71, P267
[10]  
Lions J. L., 1968, Problemes aux limites non homogenes et applications