Investigation on Microsegregation of IN718 Alloy During Additive Manufacturing via Integrated Phase-Field and Finite-Element Modeling

被引:86
作者
Wang, X. [1 ]
Liu, P. W. [1 ,2 ]
Ji, Y. [3 ]
Liu, Y. [1 ]
Horstemeyer, M. H. [1 ]
Chen, L. [1 ]
机构
[1] Mississippi State Univ, Dept Mech Engn, Mississippi State, MS 39762 USA
[2] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
[3] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
关键词
Laves phase; micro-segregation; phase-field simulation; solidification microstructure; ELASTOPLASTIC DEFORMATION; MICROSTRUCTURE EVOLUTION; RAPID SOLIDIFICATION; GROWTH; INCONEL-718; SUPERALLOYS; SIMULATION; PATTERNS; KINETICS;
D O I
10.1007/s11665-018-3620-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we apply a multi-scale model combining finite-element method (FEM) and phase-field model (PFM) to simulate the evolution of solidification microstructures at different locations within a molten pool of an additively manufactured IN718 alloy. Specifically, the FEM is used to calculate the shape of molten pool and the relative thermal gradient G at the macroscale. Then, the calculated thermal information is input into PFM for microstructure simulation. Finally, the morphology of solidification structures and formation of Laves phase at different sites are studied and compared. We found that the solidification site with a large angle between the temperature gradient and the preferred crystalline orientation could build up a high niobium (Nb) concentration in the liquid during solidification but has less possibility of forming continuous long chain morphology of Laves phase particles. This finding provides an understanding of the microstructure evolution inside the molten pool of IN718 alloy during solidification. Further, the finding indicates that the site with a large misorientation angle will have a good hot cracking resistance after solidification.
引用
收藏
页码:657 / 665
页数:9
相关论文
共 33 条
[1]   A parametric study of Inconel 625 wire laser deposition [J].
Abioye, T. E. ;
Folkes, J. ;
Clare, A. T. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2013, 213 (12) :2145-2151
[2]   Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting [J].
Amato, K. N. ;
Gaytan, S. M. ;
Murr, L. E. ;
Martinez, E. ;
Shindo, P. W. ;
Hernandez, J. ;
Collins, S. ;
Medina, F. .
ACTA MATERIALIA, 2012, 60 (05) :2229-2239
[3]   Phase-field simulation of the columnar-to-equiaxed transition in alloy solidification [J].
Badillo, Arnoldo ;
Beckermann, Christoph .
ACTA MATERIALIA, 2006, 54 (08) :2015-2026
[4]   Laser cladding of Inconel 690 on Inconel 600 superalloy for corrosion protection in nuclear applications [J].
Baldridge, T. ;
Poling, G. ;
Foroozmehr, E. ;
Kovacevic, R. ;
Metz, T. ;
Kadekar, V. ;
Gupta, M. C. .
OPTICS AND LASERS IN ENGINEERING, 2013, 51 (02) :180-184
[5]  
Caless RW, 1991, SUPERALLOYS 718 625
[6]   Microstructural characteristics of forged and heat treated Inconel-718 disks [J].
Chamanfar, A. ;
Sarrat, L. ;
Jahazi, M. ;
Asadi, M. ;
Weck, A. ;
Koul, A. K. .
MATERIALS & DESIGN, 2013, 52 :791-800
[7]   A Phase-Field Model Coupled with Large Elasto-Plastic Deformation: Application to Lithiated Silicon Electrodes [J].
Chen, L. ;
Fan, F. ;
Hong, L. ;
Chen, J. ;
Ji, Y. Z. ;
Zhang, S. L. ;
Zhu, T. ;
Chen, L. Q. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (11) :F3164-F3172
[8]   Modulation of dendritic patterns during electrodeposition: A nonlinear phase-field model [J].
Chen, Lei ;
Zhang, Hao Wei ;
Liang, Lin Yun ;
Liu, Zhe ;
Qi, Yue ;
Lu, Peng ;
Chen, James ;
Chen, Long-Qing .
JOURNAL OF POWER SOURCES, 2015, 300 :376-385
[9]   Growth directions of microstructures in directional solidification of crystalline materials [J].
Deschamps, J. ;
Georgelin, M. ;
Pocheau, A. .
PHYSICAL REVIEW E, 2008, 78 (01)
[10]   Modeling solute redistribution and microstructural development in fusion welds of Nb-bearing superalloys [J].
Dupont, JN ;
Robino, CV ;
Marder, AR .
ACTA MATERIALIA, 1998, 46 (13) :4781-4790