Holder regularity for the gradients of solutions of the strong p(x)-Laplacian

被引:21
作者
Zhang, Chao [1 ]
Zhou, Shulin [2 ]
机构
[1] Harbin Inst Technol, Dept Math, Harbin 150001, Peoples R China
[2] Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Non-standard growth; Variable exponent; Strong p(x)-Laplacian; Regularity; VARIABLE EXPONENT; ELLIPTIC-EQUATIONS; SPACES; FUNCTIONALS;
D O I
10.1016/j.jmaa.2011.12.047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under some assumptions on the continuous function p(x) > 1, we obtain the local C-1,C-alpha regularity of solutions of the strong p(x)-Laplacian -div(vertical bar del u vertical bar(p(x)-2)del u) + vertical bar del u vertical bar(p(x)-2)log(vertical bar del u vertical bar)del u . del p = 0 by using the integral estimates in Campanato spaces. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1066 / 1077
页数:12
相关论文
共 25 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[3]   Harnack's inequality and the strong p(.)-Laplacian [J].
Adamowicz, Tomasz ;
Hasto, Peter .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 250 (03) :1631-1649
[4]   Mappings of Finite Distortion and PDE with Nonstandard Growth [J].
Adamowicz, Tomasz ;
Hasto, Peter .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (10) :1940-1965
[5]  
[Anonymous], 1983, MULTIPLE INTEGRALS C
[6]  
[Anonymous], 1983, Orlicz spaces and modular spaces, Lecture Note in Mahtematics
[7]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[8]   Holder continuity of the gradient of p(x)-harmonic mappings [J].
Coscia, A ;
Mingione, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (04) :363-368
[9]  
Diening L., 2004, FSDONA04 Proc, V66, P38
[10]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+