Ankeny-Artin-Chowla conjecture and continued fraction expansion

被引:9
作者
Hashimoto, R [1 ]
机构
[1] Nagoya Univ, Grad Sch Human Informat, Nagoya, Aichi 4648601, Japan
关键词
quadratic field; fundamental unit; continued fraction;
D O I
10.1006/jnth.2001.2652
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any prime p congruent to I modulo 4, let (t + u rootp)/2 be the fundamental unit of Q(rootp). Then Ankeny, Artin, and Chowla conjectured that it is not divisible by p. In this paper, we investigate a certain relation between the conjecture and the continued fraction expansion of (1 + rootp)/2, Consequently, we prove that the conjecture is true if p is not "small" in some sense. (C) 2001 Academic Press.
引用
收藏
页码:143 / 153
页数:11
相关论文
共 8 条
[1]   THE CLASS-NUMBER OF REAL QUADRATIC NUMBER FIELDS [J].
ANKENY, NC ;
ARTIN, E ;
CHOWLA, S .
ANNALS OF MATHEMATICS, 1952, 56 (03) :479-493
[2]   ON CONTINUED FRACTIONS OF GIVEN PERIOD [J].
FRIESEN, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (01) :9-14
[3]  
MORDELL LJ, 1960, ACTA ARITH, V6, P137
[4]  
PERRON O, 1954, LEHRE KETTENBUCH, V1
[5]  
Ribenboim P., 1996, The New Book of Prime Number Records
[6]   Explicit representation of fundamental units of some real quadratic fields .2. [J].
Tomita, K .
JOURNAL OF NUMBER THEORY, 1997, 63 (02) :275-285
[7]  
VANDPOORTEN AJ, 2000, IN PRESS MATH COMP
[8]   THE FUNDAMENTAL UNIT AND BOUNDS FOR CLASS-NUMBERS OF REAL QUADRATIC FIELDS [J].
YOKOI, H .
NAGOYA MATHEMATICAL JOURNAL, 1991, 124 :181-197