Predicting Hospitalization and Outpatient Corticosteroid Use in Inflammatory Bowel Disease Patients Using Machine Learning

被引:83
作者
Waljee, Akbar K. [1 ,2 ,5 ]
Lipson, Rachel [1 ]
Wiitala, Wyndy L. [1 ]
Zhang, Yiwei [6 ]
Liu, Boang [6 ]
Zhu, Ji [6 ]
Wallace, Beth [3 ,5 ]
Govani, Shail M. [2 ,5 ]
Stidham, Ryan W. [2 ]
Hayward, Rodney [1 ,4 ,5 ]
Higgins, Peter D. R. [2 ]
机构
[1] VA Ann Arbor Hlth Care Syst, VA Ctr Clin Management Res, Ann Arbor, MI USA
[2] Univ Michigan Hlth Syst, Div Gastroenterol & Hepatol, Dept Internal Med, Ann Arbor, MI USA
[3] Univ Michigan Hlth Syst, Div Rheumatol, Dept Internal Med, Ann Arbor, MI USA
[4] Univ Michigan Hlth Syst, Div Gen Med, Dept Internal Med, Ann Arbor, MI USA
[5] Univ Michigan, Sch Med, Inst Healthcare Policy & Innovat, Ann Arbor, MI USA
[6] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
inflammatory bowel disease; corticosteroids; complications; OBSERVATION IDENTIFIER NAMES; ULCERATIVE-COLITIS; CROHNS-DISEASE; FECAL CALPROTECTIN; LOINC; PREVALENCE; RELAPSE; CODES; CARE; DIAGNOSIS;
D O I
10.1093/ibd/izx007
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background: Inflammatory bowel disease (IBD) is a chronic disease characterized by unpredictable episodes of flares and periods of remission. Tools that accurately predict disease course would substantially aid therapeutic decision-making. This study aims to construct a model that accurately predicts the combined end point of outpatient corticosteroid use and hospitalizations as a surrogate for IBD flare. Methods: Predictors evaluated included age, sex, race, use of corticosteroid-sparing immunosuppressive medications (immunomodulators and/or anti-TNF), longitudinal laboratory data, and number of previous IBD-related hospitalizations and outpatient corticosteroid prescriptions. We constructed models using logistic regression and machine learning methods (random forest [RF]) to predict the combined end point of hospitalization and/or corticosteroid use for IBD within 6 months. Results: We identified 20,368 Veterans Health Administration patients with the first (index) IBD diagnosis between 2002 and 2009. Area under the receiver operating characteristic curve (AuROC) for the baseline logistic regression model was 0.68 (95% confidence interval [CI], 0.67-0.68). AuROC for the RF longitudinal model was 0.85 (95% CI, 0.84-0.85). AuROC for the RF longitudinal model using previous hospitalization or steroid use was 0.87 (95% CI, 0.87-0.88). The 5 leading independent risk factors for future hospitalization or steroid use were age, mean serum albumin, immunosuppressive medication use, and mean and highest platelet counts. Previous hospitalization and corticosteroid use were highly predictive when included in specified models. Conclusions: A novel machine learning model substantially improved our ability to predict IBD-related hospitalization and outpatient steroid use. This model could be used at point of care to distinguish patients at high and low risk for disease flare, allowing individualized therapeutic management.
引用
收藏
页码:45 / 53
页数:9
相关论文
共 27 条
[1]   Permanent work disability in Crohn's disease [J].
Ananthakrishnan, Ashwin N. ;
Weber, Lydia R. ;
Knox, Josh F. ;
Skaros, Susan ;
Emmons, Jeanne ;
Lundeen, Sarah ;
Issa, Mazen ;
Otterson, Mary F. ;
Binion, David G. .
AMERICAN JOURNAL OF GASTROENTEROLOGY, 2008, 103 (01) :154-161
[2]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[3]   Impairment of health-related quality of life in patients with inflammatory bowel disease:: A Spanish multicenter study [J].
Casellas, F ;
Arenas, JI ;
Baudet, JS ;
Fábregas, S ;
García, N ;
Gelabert, J ;
Medina, C ;
Ochotorena, I ;
Papo, M ;
Rodrigo, L ;
Malagelada, JR .
INFLAMMATORY BOWEL DISEASES, 2005, 11 (05) :488-496
[4]   A simple biological score for predicting low risk of short-term relapse in Crohn's disease [J].
Consigny, Yann ;
Modigliani, Robert ;
Colombel, Jean-Frederic ;
Dupas, Jean-Louis ;
Lemann, Marc ;
Mary, Jean-Yves .
INFLAMMATORY BOWEL DISEASES, 2006, 12 (07) :551-557
[5]  
Forrey AW, 1996, CLIN CHEM, V42, P81
[6]   Fecal Calprotectin and Lactoferrin for the Prediction of Inflammatory Bowel Disease Relapse [J].
Gisbert, Javier P. ;
Bermejo, Fernando ;
Perez-Calle, Jose-Lazaro ;
Taxonera, Carlos ;
Vera, Isabel ;
McNicholl, Adrian G. ;
Algaba, Alicia ;
Lopez, Pilar ;
Lopez-Palacios, Natalia ;
Calvo, Marta ;
Gonzalez-Lama, Yago ;
Carneros, Jose-Antonio ;
Velasco, Marta ;
Mate, Jose .
INFLAMMATORY BOWEL DISEASES, 2009, 15 (08) :1190-1198
[7]   Accuracy of Diagnostic Codes for Identifying Patients with Ulcerative Colitis and Crohn's Disease in the Veterans Affairs Health Care System [J].
Hou, Jason K. ;
Tan, Mimi ;
Stidham, Ryan W. ;
Colozzi, John ;
Adams, Devon ;
El-Serag, Hashem ;
Waljee, Akbar K. .
DIGESTIVE DISEASES AND SCIENCES, 2014, 59 (10) :2406-2410
[8]   Development of the logical observation identifier names and codes (LOINC) vocabulary [J].
Huff, SM ;
Rocha, RA ;
McDonald, CJ ;
De Moor, GJE ;
Fiers, T ;
Bidgood, WD ;
Forrey, AW ;
Francis, WG ;
Tracy, WR ;
Leavelle, D ;
Stalling, F ;
Griffin, B ;
Maloney, P ;
Leland, D ;
Charles, L ;
Hutchins, K ;
Baenziger, J .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 1998, 5 (03) :276-292
[9]   The prevalence and geographic distribution of Crohn's disease and ulcerative colitis in the United States [J].
Kappelman, Michael D. ;
Rifas-Shiman, Sheryl L. ;
Kleinman, Ken ;
Ollendorf, Dan ;
Bousvaros, Athos ;
Grand, Richard J. ;
Finkelstein, Jonathan A. .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2007, 5 (12) :1424-1429
[10]   Direct Health Care Costs of Crohn's Disease and Ulcerative Colitis in US Children and Adults [J].
Kappelman, Michael D. ;
Rifas-Shiman, Sheryl L. ;
Porter, Carol Q. ;
Ollendorf, Daniel A. ;
Sandler, Robert S. ;
Galanko, Joseph A. ;
Finkelstein, Jonathan A. .
GASTROENTEROLOGY, 2008, 135 (06) :1907-1913