Carbon-based single-atom catalysts for CO2 electroreduction: progress and optimization strategies

被引:99
作者
Lu, Xiu-Li [1 ]
Rong, Xin [1 ]
Zhang, Chao [1 ]
Lu, Tong-Bu [1 ]
机构
[1] Tianjin Univ Technol, Inst New Energy Mat & Low Carbon Technol, MOE Int Joint Lab Mat Microstruct, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCATALYTIC REDUCTION; EFFICIENT ELECTROREDUCTION; ELECTROCHEMICAL REDUCTION; ORGANIC FRAMEWORKS; ACTIVE-SITES; GRAPHENE; METAL; IRON; NANOPARTICLES; MONOXIDE;
D O I
10.1039/d0ta01955k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical CO2 reduction reaction (CO2 RR) is a promising route to convert CO2 into industrial chemicals and fuels. The viability of CO2 electroreduction depends critically on developing highly active and selective electrocatalysts. As a new frontier in the field of catalysis, carbon-based single-atom catalysts (SACs) with atomically dispersed metal catalytic sites have shown great potential for CO2 electroreduction, and offer opportunities for an in-depth understanding and clear identification of the active sites at the atomic level. In addition, the tunable local environment of metal atoms and supports in SACs made it possible to optimize their electrocatalytic performances for CO2 reduction. However, controllable synthesis and optimization of carbon-based SACs for high-efficiency CO2 RR remain rather challenging. Herein, we summarize the recent advances in the synthesis of carbon-based SACs for CO2 RR, and discuss the mechanisms as well as the influencing factors during the catalytic process. Moreover, some optimization strategies for carbon-based SACs towards CO2 electroreduction are highlighted. At the end of this review article, we present an outlook on the challenges and prospects in this specific research area.
引用
收藏
页码:10695 / 10708
页数:14
相关论文
共 98 条
[1]   Surface Immobilization of Transition Metal Ions on Nitrogen-Doped Graphene Realizing High-Efficient and Selective CO2 Reduction [J].
Bi, Wentuan ;
Li, Xiaogang ;
You, Rui ;
Chen, Minglong ;
Yuan, Ruilin ;
Huang, Weixin ;
Wu, Xiaojun ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
ADVANCED MATERIALS, 2018, 30 (18)
[2]   Lateral Adsorbate Interactions Inhibit HCOO- while Promoting CO Selectivity for CO2 Electrocatalysis on Silver [J].
Bohra, Divya ;
Ledezma-Yanez, Isis ;
Li, Guanna ;
de Jong, Wiebren ;
Pidko, Evgeny A. ;
Smith, Wilson A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (05) :1345-1349
[3]   Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications [J].
Chen, Yuanjun ;
Ji, Shufang ;
Chen, Chen ;
Peng, Qing ;
Wang, Dingsheng ;
Li, Yadong .
JOULE, 2018, 2 (07) :1242-1264
[4]   Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons [J].
Cheng, Mu-Jeng ;
Clark, Ezra L. ;
Pham, Hieu H. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
ACS CATALYSIS, 2016, 6 (11) :7769-7777
[5]   Supported Single Atoms as New Class of Catalysts for Electrochemical Reduction of Carbon Dioxide [J].
Cheng, Yi ;
Yang, Shize ;
Jiang, San Ping ;
Wang, Shuangyin .
SMALL METHODS, 2019, 3 (09)
[6]   Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2 [J].
Cheng, Yi ;
Zhao, Shiyong ;
Li, Haobo ;
He, Shuai ;
Veder, Jean-Pierre ;
Johannessen, Bernt ;
Xiao, Jianping ;
Lu, Shanfu ;
Pan, Jian ;
Chisholm, Mattew F. ;
Yang, Shi-Ze ;
Liu, Chang ;
Chen, Jingguang G. ;
Jiang, San Ping .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 243 :294-303
[7]   Atomically Dispersed Transition Metals on Carbon Nanotubes with Ultrahigh Loading for Selective Electrochemical Carbon Dioxide Reduction [J].
Cheng, Yi ;
Zhao, Shiyong ;
Johannessen, Bernt ;
Veder, Jean-Pierre ;
Saunders, Martin ;
Rowles, Matthew R. ;
Cheng, Min ;
Liu, Chang ;
Chisholm, Matthew F. ;
De Marco, Roland ;
Cheng, Hui-Ming ;
Yang, Shi-Ze ;
Jiang, San Ping .
ADVANCED MATERIALS, 2018, 30 (13)
[8]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22
[9]   Transforming Energy with Single-Atom Catalysts [J].
Ding, Shipeng ;
Hulsey, Max J. ;
Perez-Ramirez, Javier ;
Yang, Ning .
JOULE, 2019, 3 (12) :2897-2929
[10]   Curved Surface Boosts Electrochemical CO2 Reduction to Formate via Bismuth Nanotubes in a Wide Potential Window [J].
Fan, Ke ;
Jia, Yufei ;
Ji, Yongfei ;
Kuang, Panyong ;
Zhu, Bicheng ;
Liu, Xiangyu ;
Yu, Jiaguo .
ACS CATALYSIS, 2020, 10 (01) :358-364