Increased Efficiency of Solar Cells Protected by Hydrophobic and Hydrophilic Anti-Reflecting Nanostructured Glasses

被引:18
作者
Baquedano, Estela [1 ]
Torne, Lorena [1 ]
Cano, Pablo [2 ]
Postigo, Pablo A. [1 ]
机构
[1] CSIC, Inst Micro & Nanotecnol, Madrid 28760, Spain
[2] Univ Politecn Madrid, IES, E-28040 Madrid, Spain
关键词
glass; nanostructuration; nanolithography; plasma etching; optical properties; solar cells; hydrophobic; hydrophilic; BROAD-BAND; PHOTOVOLTAIC APPLICATIONS; MULTICRYSTALLINE SILICON; SOFT LITHOGRAPHY; THIN-FILMS; SURFACES; LIGHT; SUPERHYDROPHOBICITY; FABRICATION; SUBSTRATE;
D O I
10.3390/nano7120437
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigated the fabrication of large-area (cm(2)) nanostructured glasses for solar cell modules with hydrophobic and hydrophilic properties using soft lithography and colloidal lithography. Both of these techniques entail low-cost and ease of nanofabrication. We explored the use of simple 1D and 2D nanopatterns (nanowires and nanocones) and the effect of introducing disorder in the nanostructures. We observed an increase in the transmitted light for ordered nanostructures with a maximum value of 99% for wavelengths >600 nm when ordered nanocones are fabricated on the two sides of the solar glass. They produced an increment in the efficiency of the packaged solar cell with respect to the glass without nanostructures. On the one hand, the wettability properties showed that the ordering of the nanostructures improved the hydrophobicity of the solar glasses and increased their self-cleaning capacity. On the other hand, the disordered nanostructures improved the hydrophilic properties of solar glasses, increasing their anti-fogging capacity. The results show that by selecting the appropriate nanopattern, the wettability properties (hydrophobic or hydrophilic) can be easily improved without decreasing the efficiency of the solar cell underneath.
引用
收藏
页数:12
相关论文
共 41 条
[1]   Fabrication of Silicon Nanobelts and Nanopillars by Soft Lithography for Hydrophobic and Hydrophilic Photonic Surfaces [J].
Baquedano, Estela ;
Martinez, Ramses V. ;
Llorens, Jose M. ;
Postigo, Pablo A. .
NANOMATERIALS, 2017, 7 (05)
[2]   Purity of the sacred lotus, or escape from contamination in biological surfaces [J].
Barthlott, W ;
Neinhuis, C .
PLANTA, 1997, 202 (01) :1-8
[3]   The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells [J].
Berginski, Michael ;
Huepkes, Juergen ;
Schulte, Melanie ;
Schoepe, Gunnar ;
Stiebig, Helmut ;
Rech, Bernd ;
Wuttig, Matthias .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (07)
[4]   Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns [J].
Bozzola, Angelo ;
Liscidini, Marco ;
Andreani, Lucio Claudio .
OPTICS EXPRESS, 2012, 20 (06) :A224-A244
[5]  
Brongersma ML, 2014, NAT MATER, V13, P451, DOI [10.1038/NMAT3921, 10.1038/nmat3921]
[6]   Optical absorption enhancement in a hybrid system photonic crystal - thin substrate for photovoltaic applications [J].
Buencuerpo, Jeronimo ;
Munioz-Camuniez, Luis E. ;
Dotor, Maria L. ;
Postigo, Pablo A. .
OPTICS EXPRESS, 2012, 20 (14) :A452-A464
[7]   Glass needs for a growing photovoltaics industry [J].
Burrows, Keith ;
Fthenakis, Vasilis .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 132 :455-459
[8]   Glasses for solar energy conversion systems [J].
Deubener, J. ;
Helsch, G. ;
Moiseev, A. ;
Bornhoeft, H. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2009, 29 (07) :1203-1210
[9]   Approaching the Lambertian limit in randomly textured thin-film solar cells [J].
Fahr, Stephan ;
Kirchartz, Thomas ;
Rockstuhl, Carsten ;
Lederer, Falk .
OPTICS EXPRESS, 2011, 19 (14) :A865-A874
[10]   Low pressure chemical vapour deposition of ZnO layers for thin-film solar cells: temperature-induced morphological changes [J].
Fay, S ;
Kroll, U ;
Bucher, C ;
Vallat-Sauvain, E ;
Shah, A .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2005, 86 (03) :385-397