Quantitative Assessment of Regional Dynamic Airway Collapse in Neonates via Retrospectively Respiratory-Gated 1H Ultrashort Echo Time MRI

被引:41
作者
Bates, Alister J. [1 ,2 ,3 ]
Higano, Nara S. [2 ,3 ]
Hysinger, Erik B. [1 ,2 ,3 ,4 ]
Fleck, Robert J. [1 ,2 ,3 ,4 ]
Hahn, Andrew D. [5 ]
Fain, Sean B. [5 ,6 ]
Kingma, Paul S. [2 ,3 ,4 ,7 ]
Woods, Jason C. [1 ,2 ,3 ,4 ,8 ,9 ]
机构
[1] Cincinnati Childrens Hosp, Div Pulm Med, Upper Airway Ctr, Cincinnati, OH USA
[2] Cincinnati Childrens Hosp, Div Pulm Med, Ctr Pulm Imaging Res, Cincinnati, OH USA
[3] Cincinnati Childrens Hosp, Dept Radiol, Cincinnati, OH USA
[4] Univ Cincinnati, Dept Pediat, Cincinnati, OH USA
[5] Univ Wisconsin, Dept Med Phys, 1530 Med Sci Ctr, Madison, WI 53706 USA
[6] Univ Wisconsin, Dept Radiol, Madison, WI 53706 USA
[7] Cincinnati Childrens Hosp, Dept Neonatol & Pulm Biol, Cincinnati, OH USA
[8] Univ Cincinnati, Dept Radiol, Cincinnati, OH USA
[9] Univ Cincinnati, Dept Phys, Cincinnati, OH USA
基金
美国国家卫生研究院;
关键词
neonatal; dynamic airway collapse; tracheomalacia; airway MRI; respiratory-gated imaging; PULMONARY MRI; PRESSURE; MOTION;
D O I
10.1002/jmri.26296
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundNeonatal dynamic tracheal collapse (tracheomalacia, TM) is a common and serious comorbidity in infants, particularly those with chronic lung disease of prematurity (bronchopulmonary dysplasia, BPD) or congenital airway or lung-related conditions such as congenital diaphragmatic hernia (CDH), but the underlying pathology, impact on clinical outcomes, and response to therapy are not well understood. There is a pressing clinical need for an accurate, objective, and safe assessment of neonatal TM. PurposeTo use retrospectively respiratory-gated ultrashort echo-time (UTE) MRI to noninvasively analyze moving tracheal anatomy for regional, quantitative evaluation of dynamic airway collapse in quiet-breathing, nonsedated neonates. Study TypeProspective. Population/SubjectsTwenty-seven neonatal subjects with varying respiratory morbidities (control, BPD, CDH, abnormal polysomnogram). Field Strength/SequenceHigh-resolution 3D radial UTE MRI (0.7mm isotropic) on 1.5T scanner sited in the neonatal intensive care unit. AssessmentImages were retrospectively respiratory-gated using the motion-modulated time-course of the k-space center. Tracheal surfaces were generated from segmentations of end-expiration/inspiration images and analyzed geometrically along the tracheal length to calculate percent-change in luminal cross-sectional area (A(%)) and ratio of minor-to-major diameters at end-expiration (r(D,exp)). Geometric results were compared to clinically available bronchoscopic findings (n=14). Statistical TestsTwo-sample t-test. ResultsMaximum A(%) significantly identified subjects with/without a bronchoscopic TM diagnosis (with: 46.910.0%; without: 27.05.8%; P < 0.001), as did minimum r(D,exp) (with: 0.3460.146; without: 0.6710.218; P=0.008). Subjects with severe BPD exhibited a far larger range of minimum r(D,exp) than subjects with mild/moderate BPD or controls (0.631 +/- 0.222, 0.782 +/- 0.075, and 0.776 +/- 0.030, respectively), while minimum r(D,exp) was reduced in CDH subjects (0.331 +/- 0.171) compared with controls (P < 0.001). Data ConclusionRespiratory-gated UTE MRI can quantitatively and safely evaluate neonatal dynamic tracheal collapse, as validated with the clinical standard of bronchoscopy, without requiring invasive procedures, anesthesia, or ionizing radiation. Level of Evidence: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;49:659-667.
引用
收藏
页码:659 / 667
页数:9
相关论文
共 40 条
[1]  
[Anonymous], CLIN BIOMECH
[2]   The effects of curvature and constriction on airflow and energy loss in pathological tracheas [J].
Bates, A. J. ;
Cetto, R. ;
Doorly, D. J. ;
Schroter, R. C. ;
Tolley, N. S. ;
Comerford, A. .
RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2016, 234 :69-78
[3]   Power loss mechanisms in pathological tracheas [J].
Bates, A. J. ;
Comerford, A. ;
Cetto, R. ;
Schroter, R. C. ;
Tolley, N. S. ;
Doorly, D. J. .
JOURNAL OF BIOMECHANICS, 2016, 49 (11) :2187-2192
[4]  
Baxter JD, 1963, ANN OTO RHINOL LARYN, V1013, P23
[5]  
BHUTANI VK, 1981, PEDIATR RES, V15, P829
[6]  
Burg G, 2018, P AM THROAC SOC
[7]   Tracheomalacia and tracheobronchomalacia in children and adults - An in-depth review [J].
Carden, KA ;
Boiselle, PM ;
Waltz, DA ;
Ernst, A .
CHEST, 2005, 127 (03) :984-1005
[8]   Respiratory Phenotypes for Preterm Infants, Children, and Adults: Bronchopulmonary Dysplasia and More [J].
Collaco, Joseph M. ;
McGrath-Morrow, Sharon A. .
ANNALS OF THE AMERICAN THORACIC SOCIETY, 2018, 15 (05) :530-538
[9]   Free-breathing, zero-TE MR lung imaging [J].
Gibiino, Fabio ;
Sacolick, Laura ;
Menini, Anne ;
Landini, Luigi ;
Wiesinger, Florian .
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2015, 28 (03) :207-215
[10]   Pulmonary MRI of Neonates in the Intensive Care Unit Using 3D Ultrashort Echo Time and a Small Footprint MRI System [J].
Hahn, Andrew D. ;
Higano, Nara S. ;
Walkup, Laura L. ;
Thomen, Robert P. ;
Cao, Xuefeng ;
Merhar, Stephanie L. ;
Tkach, Jean A. ;
Woods, Jason C. ;
Fain, Sean B. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2017, 45 (02) :463-471