Generalized Galilei-invariant classical mechanics

被引:1
|
作者
Woodcock, HW [1 ]
Havas, P
机构
[1] Philadephia Univ, Sch Sci & Hlth, Philadelphia, PA 19144 USA
[2] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
来源
基金
美国国家科学基金会;
关键词
general theory of classical mechanics of discrete systems; classical groups; symmetry and conservation laws; celestial mechanics;
D O I
10.1142/S0217751X05020987
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
To describe the "slow" motions of n interacting mass points, we give the most general four-dimensional (4D) noninstantaneous, nonparticle symmetric Galilei-invariant variational principle. It involves two-body invariants constructed from particle 4-positions and 4-velocities of the proper orthochronous inhomogeneous Galilei group. The resulting 4D equations of motion and multiple-time conserved quantities involve integrals over the worldlines of the other n - 1 interacting particles. For a particular time-asymmetric retarded (advanced) interaction, we show the vanishing of all integrals over worldlines in the ten standard 4D multiple-time conserved quantities, thus yielding a Newtonian-like initial value problem. This interaction gives 3D noninstantaneous, nonparticle symmetric, coupled nonlinear second-order delay-differential equations of motion that involve only algebraic combinations of nonsimultaneous particle positions, velocities, and accelerations. The ten 3D noninstantaneous, nonpaxticle symmetric conserved quantities involve only algebraic combinations of nonsimultaneous particle positions and velocities. A two-body example with a generalized Newtonian gravity is provided. We suggest that this formalism might be useful as an alternative slow-motion mechanics for astrophysical applications.
引用
收藏
页码:4259 / 4289
页数:31
相关论文
共 50 条
  • [1] Galilei-invariant equations for massive fields
    Niederle, J.
    Nikitin, A. G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)
  • [2] GALILEI-INVARIANT EQUATIONS WITH AN ANOMALOUS INTERACTION
    NIKITIN, AG
    UKRAINSKII FIZICHESKII ZHURNAL, 1981, 26 (03): : 394 - 402
  • [3] GALILEI-INVARIANT SINGLE-PARTICLE ACTION
    CAWLEY, RG
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1973, 16 (01): : 173 - 187
  • [4] THE NONLINEAR GALILEI-INVARIANT GENERALIZATION OF LAME EQUATIONS
    FUSHCHICH, VI
    SLAVUTSKII, SL
    DOKLADY AKADEMII NAUK SSSR, 1986, 287 (02): : 320 - 323
  • [5] NELIEV REDUCTION OF GALILEI-INVARIANT SPINOR EQUATIONS
    ZHDANOV, RZ
    ANDREITSEV, AY
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1990, (07): : 8 - 11
  • [6] SOME RESULTS IN GALILEI-INVARIANT FIELD-THEORIES
    KASHIWA, T
    SETO, K
    TAKAHASHI, Y
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (07): : 745 - 754
  • [7] QUANTUM-FIELD THEORIES WITH GALILEI-INVARIANT INTERACTIONS
    NARNHOFER, H
    THIRRING, W
    PHYSICAL REVIEW LETTERS, 1990, 64 (16) : 1863 - 1866
  • [8] On new Galilei-invariant equations in two-dimensional spacetime
    Lahno, VI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (42): : 8511 - 8519
  • [9] GALILEI-INVARIANT NONLINEAR-SYSTEMS OF EVOLUTION-EQUATIONS
    FUSHCHYCH, WI
    CHERNIHA, RM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (19): : 5569 - 5579
  • [10] POTENTIAL SCATTERING AND GALILEI-INVARIANT EXPANSIONS OF SCATTERING-AMPLITUDES
    KALNINS, EG
    PATERA, J
    SHARP, RT
    WINTERNITZ, P
    PHYSICAL REVIEW D, 1973, 8 (10) : 3527 - 3538