MIMO Radar Target Localization via Markov Chain Monte Carlo Optimization

被引:0
作者
Liang, Junli [1 ]
Chen, Yajun [2 ]
Ye, Zhonghua [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Peoples R China
[2] Xian Univ Technol, Fac Printing Package Engn & Digital Media, Xian, Peoples R China
[3] Xian Univ Finance & Econ, Sch Stat, Xian, Peoples R China
[4] Xian Univ Technol, Sch Automat & Informat, Xian, Peoples R China
来源
2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) | 2015年
关键词
Target localization; multiple-input multiple-output (MIMO) radar; nonlinear optimization; Bayesian; Markov Chain Monte Carlo (MCMC); Gibbs sampling; ANTENNAS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we focus on the problem of target localization in distributed multiple-input multiple-output (MIMO) radar, where the range measurements are the sum of transmitter-to-target and target-to-receiver distances. To determine the target position, this paper presents a Bayesian approach, in which a Bayesian model is derived for the noisy range measurements and thus the posterior distribution of the unknown target position parameters is defined. However, this complicated distribution is unhelpful for sampling directly. To solve it, this paper applies the Markov Chain Monte Carlo (MCMC) method to estimate the corresponding posterior distribution and draws samples via Gibbs sampling. The performance of the developed algorithm is demonstrated via computer simulation.
引用
收藏
页码:2158 / 2162
页数:5
相关论文
共 12 条
  • [1] Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC
    Andrieu, C
    Doucet, A
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (10) : 2667 - 2676
  • [2] Direct positioning of stationary targets using MIMO radar
    Bar-Shalom, Ofer
    Weiss, Anthony J.
    [J]. SIGNAL PROCESSING, 2011, 91 (10) : 2345 - 2358
  • [3] Bayesian analysis of generalized frequency-modulated signals
    Copsey, K
    Gordon, N
    Marrs, A
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) : 725 - 735
  • [4] MIMO radar: An idea whose time has come
    Fishler, E
    Haimovich, A
    Blum, R
    Chizhik, D
    Cimini, L
    Valenzuela, R
    [J]. PROCEEDINGS OF THE IEEE 2004 RADAR CONFERENCE, 2004, : 71 - 78
  • [5] Markov chain Monte Carlo methods with applications to signal processing
    Fitzgerald, WJ
    [J]. SIGNAL PROCESSING, 2001, 81 (01) : 3 - 18
  • [6] Target Localization Accuracy Gain in MIMO Radar-Based Systems
    Godrich, Hana
    Haimovich, Alexander M.
    Blum, Rick S.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) : 2783 - 2803
  • [7] Target Estimation Using Sparse Modeling for Distributed MIMO Radar
    Gogineni, Sandeep
    Nehorai, Arye
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (11) : 5315 - 5325
  • [8] Green PJ, 1995, BIOMETRIKA, V82, P711, DOI 10.2307/2337340
  • [9] MIMO radar with widely separated antennas
    Haimovich, Alexander M.
    Blum, Rick S.
    Cimini, Leonard J., Jr.
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2008, 25 (01) : 116 - 129
  • [10] Noncoherent MIMO Radar for Location and Velocity Estimation: More Antennas Means Better Performance
    He, Qian
    Blum, Rick S.
    Haimovich, Alexander M.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (07) : 3661 - 3680