Weak and strong solutions for the incompressible Navier-Stokes equations with damping

被引:159
作者
Cai, Xiaojing [1 ]
Jiu, Quansen [1 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100037, Peoples R China
关键词
Navier-Stokes equations; damping; weak solutions; strong solution;
D O I
10.1016/j.jmaa.2008.01.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the Cauchy problem of the Navier-Stokes equations with damping alpha vertical bar u vertical bar(beta-1)u(alpha > 0) has global weak solutions for any beta >= 1, global strong solution for any beta >= 7/2 and that the strong solution is unique for any 7/2 <= beta <= 5. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:799 / 809
页数:11
相关论文
共 18 条
[1]   Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model [J].
Bresch, D ;
Desjardins, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 238 (1-2) :211-223
[2]   On some compressible fluid models: Korteweg, lubrication, and shallow water systems [J].
Bresch, D ;
Desjardins, B ;
Lin, CK .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (3-4) :843-868
[3]   L3,∞-solutions of the Navier-Stokes equations and backward uniqueness [J].
Escauriaza, L ;
Seregin, G ;
Sverák, V .
RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (02) :211-250
[4]  
Foias C., 1961, B SOC MATH FRANCE, V89, P1
[5]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212
[6]  
Hopf E., 1950, MATH NACHR, V4, P213, DOI DOI 10.1002/MANA.3210040121
[7]  
Hsiao L., 1997, Quasilinear Hyperbolic Systems and Dissipative Mechanisms
[8]   Convergence rate for compressible Euler equations with damping and vacuum [J].
Huang, FM ;
Pan, RH .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 166 (04) :359-376
[10]  
Ladyzhenskaya O. A., 1969, MATH THEORY VISCOUS