MoS2/graphene nanocomposite with enlarged interlayer distance as a high performance anode material for lithium-ion battery

被引:26
|
作者
Chen, Lu [1 ]
Chen, Fang [1 ]
Nguyen Tronganh [1 ]
Lu, Mengna [1 ]
Jiang, Yong [1 ]
Gao, Yang [2 ]
Jiao, Zheng [2 ]
Cheng, Lingli [2 ]
Zhao, Bing [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage; hydrothermal; aerogel; layered; freeze drying; EXCELLENT ELECTROCHEMICAL PERFORMANCE; HIERARCHICAL MOS2/POLYANILINE; ASSISTED SYNTHESIS; MOS2; NANOSHEETS; COMPOSITES; FABRICATION; NANOFLOWERS;
D O I
10.1557/jmr.2016.332
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we report on the preparation of few-layered MoS2/graphene nanocomposite (MoS2/GNS-G) with enlarged interlayer distance as the lithium-ion battery anode via a facile hydrothermal method followed by glucose-assisted thermal annealing. During the synthesis, glucose serving as a small organic molecule can interlay into MoS2 nanosheets, which effectively hinder the aggregation and restacking of MoS2 during the process of heat treatment, retaining a sandwich structure of the composite. The enlarged interlayer distance (approximately 0.98 nm), along with the inserted amorphous carbon, could promote efficient lithium migration into active sites, buffer the volume change and stabilize the electrode structure effectively during the lithium insertion/extraction cycling. Electrochemical tests demonstrate that the MoS2/GNS-G delivers a high discharge capacity of 1583.0 mA h/g in the initial cycle at current density of 100 mA/g. The specific capacity remained at the relative high value of 673.5 mA h/g even at a current density of 1000 mA/g.
引用
收藏
页码:3151 / 3160
页数:10
相关论文
共 50 条
  • [41] Encapsulating flower-like MoS2 nanosheets into interlayer of nitrogen-doped graphene for high-performance lithium-ion storage
    Liu, Siyu
    Jia, Kaili
    Yang, Juan
    He, Songjie
    Liu, Zhibin
    Wang, Xiaoting
    Qiu, Jieshan
    CHEMICAL ENGINEERING JOURNAL, 2023, 475
  • [42] Improving Lithium-Ion Diffusion Kinetics in Nano-Si@C Anode Materials with Hierarchical MoS2 Decoration for High-Performance Lithium-Ion Batteries
    Ye, Xiongbiao
    Gan, Chuanhai
    Huang, Liuqing
    Qiu, Yiwei
    Xu, Ying
    Huang, Liuying
    Luo, Xuetao
    CHEMELECTROCHEM, 2021, 8 (07) : 1270 - 1279
  • [43] Reviving bulky MoS2 as an advanced anode for lithium-ion batteries
    Li, Shicai
    Liu, Ping
    Huang, Xiaobing
    Tang, Yougen
    Wang, Haiyan
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) : 10988 - 10997
  • [44] Hierarchical MoS2/C@MXene composite as an anode for high-performance lithium-ion capacitors
    Jin, Yifan
    Tan, Shutian
    Zhu, Zhengju
    He, Ying
    Bao, Le Quoc
    Saha, Petr
    Cheng, Qilin
    APPLIED SURFACE SCIENCE, 2022, 598
  • [45] Solvothermal-assisted assembly of MoS2 nanocages on graphene sheets to enhance the electrochemical performance of lithium-ion battery
    He Dafang
    Yang Yi
    Liu Zhenmin
    Shao Jin
    Wu Jian
    Wang Shun
    Shen Liming
    Bao Ningzhong
    NANO RESEARCH, 2020, 13 (04) : 1029 - 1034
  • [46] Scalable synthesis of Sb/MoS2/C composite as high performance anode material for lithium ion batteries
    Huang, Youguo
    Ji, Cheng
    Pan, Qichang
    Zhang, Xiaohui
    Zhang, Jiujun
    Wang, Hongqiang
    Liao, Tao
    Li, Qingyu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 728 : 1139 - 1145
  • [47] A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery
    Ren, Jing
    Ren, Rui-Peng
    Lv, Yong-Kang
    CHEMICAL ENGINEERING JOURNAL, 2018, 353 : 419 - 424
  • [48] Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance
    Fei, Ling
    Lin, Qianglu
    Yuan, Bin
    Chen, Gen
    Xie, Pu
    Li, Yuling
    Xu, Yun
    Deng, Shuguang
    Smirnov, Sergei
    Luo, Hongmei
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (11) : 5330 - 5335
  • [49] Boron Oxide Enhancing Stability of MoS2 Anode Materials for Lithium-Ion Batteries
    Nguyen, Thang Phan
    Kim, Il Tae
    MATERIALS, 2022, 15 (06)
  • [50] Three-Dimensional Crumpled Reduced Graphene Oxide/MoS2 Nanoflowers: A Stable Anode for Lithium-Ion Batteries
    Xiong, Fangyu
    Cai, Zhengyang
    Qu, Longbing
    Zhang, Pengfei
    Yuan, Zefang
    Asare, Owusu Kwadwo
    Xu, Wangwang
    Lin, Chao
    Mai, Liqiang
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (23) : 12625 - 12630