MoS2/graphene nanocomposite with enlarged interlayer distance as a high performance anode material for lithium-ion battery

被引:26
|
作者
Chen, Lu [1 ]
Chen, Fang [1 ]
Nguyen Tronganh [1 ]
Lu, Mengna [1 ]
Jiang, Yong [1 ]
Gao, Yang [2 ]
Jiao, Zheng [2 ]
Cheng, Lingli [2 ]
Zhao, Bing [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage; hydrothermal; aerogel; layered; freeze drying; EXCELLENT ELECTROCHEMICAL PERFORMANCE; HIERARCHICAL MOS2/POLYANILINE; ASSISTED SYNTHESIS; MOS2; NANOSHEETS; COMPOSITES; FABRICATION; NANOFLOWERS;
D O I
10.1557/jmr.2016.332
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we report on the preparation of few-layered MoS2/graphene nanocomposite (MoS2/GNS-G) with enlarged interlayer distance as the lithium-ion battery anode via a facile hydrothermal method followed by glucose-assisted thermal annealing. During the synthesis, glucose serving as a small organic molecule can interlay into MoS2 nanosheets, which effectively hinder the aggregation and restacking of MoS2 during the process of heat treatment, retaining a sandwich structure of the composite. The enlarged interlayer distance (approximately 0.98 nm), along with the inserted amorphous carbon, could promote efficient lithium migration into active sites, buffer the volume change and stabilize the electrode structure effectively during the lithium insertion/extraction cycling. Electrochemical tests demonstrate that the MoS2/GNS-G delivers a high discharge capacity of 1583.0 mA h/g in the initial cycle at current density of 100 mA/g. The specific capacity remained at the relative high value of 673.5 mA h/g even at a current density of 1000 mA/g.
引用
收藏
页码:3151 / 3160
页数:10
相关论文
共 50 条
  • [31] Facile synthesis of Sn/MoS2/C composite as an anode material for lithium-ion batteries with outstanding performance
    Wang, Hongqiang
    Pan, Qichang
    Chen, Jing
    Zan, Yahui
    Huang, Youguo
    Yang, Guanhua
    Yan, Zhixiong
    Li, Qingyu
    NEW JOURNAL OF CHEMISTRY, 2016, 40 (02) : 1263 - 1268
  • [32] 3D nanoflower-like MoS2 grown on wheat straw cellulose carbon for lithium-ion battery anode material
    Liu, Meina
    Li, Nan
    Wang, Shaoqiang
    Li, Yi
    Liang, Ce
    Yu, Kaifeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 933
  • [33] Synthesis of Structurally Stable 3D MoS2 Architectures as High Performance Lithium-Ion Battery Anodes
    Xu, Zhanwei
    Shen, Xuetao
    Zhang, Qinglin
    Li, Jiayin
    Kong, Luo
    Cao, Liyun
    Huang, Jianfeng
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (06) : 311 - 315
  • [34] Directionally assembled MoS2 with significantly expanded interlayer spacing: a superior anode material for high-rate lithium-ion batteries
    Wei, Qilin
    Gao, Min-Rui
    Li, Yan
    Zhang, Dongtang
    Wu, Siyu
    Chen, Zonghai
    Sun, Yugang
    MATERIALS CHEMISTRY FRONTIERS, 2018, 2 (08) : 1441 - 1448
  • [35] Fabrication of flower-like MoS2/TiO2 hybrid as an anode material for lithium ion batteries
    Zhu, Xiaoquan
    Liang, Xiaoyu
    Fan, Xiaobin
    Su, Xintai
    RSC ADVANCES, 2017, 7 (61): : 38119 - 38124
  • [36] TiS2-MWCNT hybrid as high performance anode in lithium-ion battery
    Kartick, B.
    Srivastava, Suneel Kumar
    Mahanty, Sourindra
    JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (09)
  • [37] Synthesis of MoS2 nanotube using a sacrificial template method as advanced anode material for lithium-ion batteries
    Cao, Mengjue
    Feng, Yi
    Zhang, Pengcheng
    Yang, Lvye
    Gu, Xiaoli
    Yao, Jianfeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 907
  • [38] CuO/rGO nanocomposite as an anode material for high-performance lithium-ion batteries
    Li, Yong
    Duan, Chao Nan
    Jiang, Zhou
    bin Zhou, Xue
    Wang, Ying
    MATERIALS RESEARCH EXPRESS, 2021, 8 (05)
  • [39] 3D MoS2/graphene nanoflowers as anode for advanced lithium-ion batteries
    He, Han-bing
    Liu, Zhen
    Peng, Chao-qun
    Liu, Jun
    Wang, Xiao-feng
    Zeng, Jing
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2022, 32 (12) : 4041 - 4049
  • [40] Facile preparation of MoS2/maleic acid composite as high-performance anode for lithium ion batteries
    Wang, Jingshi
    Shen, Zhigang
    Yi, Min
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (37) : 15887 - 15894