MoS2/graphene nanocomposite with enlarged interlayer distance as a high performance anode material for lithium-ion battery

被引:26
|
作者
Chen, Lu [1 ]
Chen, Fang [1 ]
Nguyen Tronganh [1 ]
Lu, Mengna [1 ]
Jiang, Yong [1 ]
Gao, Yang [2 ]
Jiao, Zheng [2 ]
Cheng, Lingli [2 ]
Zhao, Bing [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Shanghai Appl Radiat Inst, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy storage; hydrothermal; aerogel; layered; freeze drying; EXCELLENT ELECTROCHEMICAL PERFORMANCE; HIERARCHICAL MOS2/POLYANILINE; ASSISTED SYNTHESIS; MOS2; NANOSHEETS; COMPOSITES; FABRICATION; NANOFLOWERS;
D O I
10.1557/jmr.2016.332
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we report on the preparation of few-layered MoS2/graphene nanocomposite (MoS2/GNS-G) with enlarged interlayer distance as the lithium-ion battery anode via a facile hydrothermal method followed by glucose-assisted thermal annealing. During the synthesis, glucose serving as a small organic molecule can interlay into MoS2 nanosheets, which effectively hinder the aggregation and restacking of MoS2 during the process of heat treatment, retaining a sandwich structure of the composite. The enlarged interlayer distance (approximately 0.98 nm), along with the inserted amorphous carbon, could promote efficient lithium migration into active sites, buffer the volume change and stabilize the electrode structure effectively during the lithium insertion/extraction cycling. Electrochemical tests demonstrate that the MoS2/GNS-G delivers a high discharge capacity of 1583.0 mA h/g in the initial cycle at current density of 100 mA/g. The specific capacity remained at the relative high value of 673.5 mA h/g even at a current density of 1000 mA/g.
引用
收藏
页码:3151 / 3160
页数:10
相关论文
共 50 条
  • [21] MoS2/SnS heterostructure composite for high-performance lithium-ion battery anodes
    Guo, Yiwen
    Liu, Kun
    Liu, Wenlong
    Zhang, Ning
    Sun, Xiaodong
    Li, Song
    Wen, Zhongsheng
    Sun, Juncai
    SOLID STATE SCIENCES, 2024, 156
  • [22] Interlayer expanded MoS2 enabled by edge effect of graphene nanoribbons for high performance lithium and sodium ion batteries
    Liu, Yang
    Wang, Xuzhen
    Song, Xuedan
    Dong, Yanfeng
    Yang, Lan
    Wang, Luxiang
    Jia, Dianzeng
    Zhao, Zongbin
    Qiu, Jieshan
    CARBON, 2016, 109 : 461 - 471
  • [23] Hydrothermal synthesis of layer-controlled MoS2/graphene composite aerogels for lithium-ion battery anode materials
    Zhao, Bing
    Wang, Zhixuan
    Gao, Yang
    Chen, Lu
    Lu, Mengna
    Jiao, Zheng
    Jiang, Yong
    Ding, Yuanzhang
    Cheng, Lingli
    APPLIED SURFACE SCIENCE, 2016, 390 : 209 - 215
  • [24] Intercalated hydrates stabilize bulky MoS2 anode for Lithium-Ion battery
    Xie, Miao
    Lv, Zhuoran
    Zhao, Wei
    Fang, Yuqiang
    Huang, Jian
    Huang, Fuqiang
    CHEMICAL ENGINEERING JOURNAL, 2023, 470
  • [25] Polyaniline intercalated MoS2 nanosheet array aligned on reduced oxide graphene as high performance anode for lithium-ion batteries
    Zhang, Jiaqing
    Huang, Wenjie
    Yuan, Bin
    Hu, Renzong
    Yang, Lichun
    SOLID STATE IONICS, 2022, 375
  • [26] Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material for lithium-ion batteries
    Sun, Panling
    Zhang, Wuxing
    Hu, Xianluo
    Yuan, Lixia
    Huang, Yunhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (10) : 3498 - 3504
  • [27] A graphene-like MoS2/graphene nanocomposite as a highperformance anode for lithium ion batteries
    Liu, Yongchang
    Zhao, Yanping
    Jiao, Lifang
    Chen, Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (32) : 13109 - 13115
  • [28] Preparation of Nanoplatelet-Like MoS2/rGO Composite as High-Performance Anode Material for Lithium-Ion Batteries
    Pan, Shugang
    Zhang, Ning
    Fu, Yongsheng
    NANO, 2019, 14 (03)
  • [29] Fabrication of 3D Hierarchical MoS2/Polyaniline and MoS2/C Architectures for Lithium-Ion Battery Applications
    Hu, Lianren
    Ren, Yumei
    Yang, Hongxia
    Xu, Qun
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (16) : 14644 - 14652
  • [30] Enhanced Hydrothermal Synthesis and Electrochemical Performance of Subsphaeroidal MoS2 used as Anode Material for Lithium-Ion Batteries
    Wu Yang
    Zhang Liangliang
    Wang Wei
    Fan Dongsheng
    Yang Shenshen
    Bai Yunhao
    Li Jiwen
    Liu Wei
    RARE METAL MATERIALS AND ENGINEERING, 2023, 52 (08) : 2893 - 2900