Methane hydrate formation in the confined nanospace of activated carbons in seawater environment

被引:34
作者
Cuadrado-Collados, Carlos [1 ]
Fauth, Francois [2 ]
Such-Basanez, Ion [3 ]
Martinez-Escandell, Manuel [1 ]
Silvestre-Albero, Joaquin [1 ]
机构
[1] Univ Alicante, Dept Quim Inorgan, Inst Univ Mat, Lab Mat Avanzados, Alicante, Spain
[2] CELLS ALBA Synchrotron, E-08290 Cerdanyola Del Valles, Spain
[3] Univ Alicante, Serv Tecn Invest, Alicante, Spain
关键词
Gas hydrates; Methane storage; Nanoconfinement; Activated carbon; Saline environment; STORAGE; WATER; GAS; DISSOCIATION; SIMULATION; DRY;
D O I
10.1016/j.micromeso.2017.07.047
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Methane hydrate formation studies in saline environment show that activated carbons are excellent host structures able to promote the water-to-hydrate conversion. Under confinement conditions, methane hydrate formation takes place at mild temperatures (-10 degrees C), low pressures (<6 MPa), with extremely fast kinetics (within minutes) and with a large adsorption capacity (up to 66 wt% CH4 for seawater, i.e. a 128% improvement compared to the dry carbon). Similar studies using ultrapure water give rise to a total methane adsorption capacity of 93 wt%, i.e. entropic effects exerted by salt play a crucial role in the methane hydrate nucleation and growth. Synthesized methane hydrates exhibit a sl crystal structure and a stoichiometry that mimics natural hydrates. These findings open the gate towards the application of activated carbons with a highly developed nanoporous network as host structure for offshore methane storage in marine reservoirs. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 225
页数:6
相关论文
共 23 条
[1]  
[Anonymous], 2016, DOEEIA0484, P1
[2]  
[Anonymous], CLATHRATE HYDRATES N
[3]   Illuminating solid gas storage in confined spaces - methane hydrate formation in porous model carbons [J].
Borchardt, Lars ;
Nickel, Winfried ;
Casco, Mirian ;
Senkovska, Irena ;
Bon, Volodymyr ;
Wallacher, Dirk ;
Grimm, Nico ;
Krause, Simon ;
Silvestre-Albero, Joaquin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (30) :20607-20614
[4]   High-Performance of Gas Hydrates in Confined Nanospace for Reversible CH4/CO2 Storage [J].
Casco, Mirian E. ;
Jorda, Jose L. ;
Rey, Fernando ;
Fauth, Francois ;
Martinez-Escandell, Manuel ;
Rodriguez-Reinoso, Francisco ;
Ramos-Fernandez, Enrique V. ;
Silvestre-Albero, Joaquin .
CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (29) :10028-10035
[5]   Paving the way for methane hydrate formation on metal-organic frameworks (MOFs) [J].
Casco, Mirian E. ;
Rey, Fernando ;
Jorda, Jose L. ;
Rudic, Svemir ;
Fauth, Francois ;
Martinez-Escandell, Manuel ;
Rodriguez-Reinoso, Francisco ;
Ramos-Fernandez, Enrique V. ;
Silvestre-Albero, Joaquin .
CHEMICAL SCIENCE, 2016, 7 (06) :3658-3666
[6]   Methane hydrate formation in confined nanospace can surpass nature [J].
Casco, Mirian E. ;
Silvestre-Albero, Joaquin ;
Ramirez-Cuesta, Anibal J. ;
Rey, Fernando ;
Jorda, Jose L. ;
Bansode, Atul ;
Urakawa, Atsushi ;
Peral, Inma ;
Martinez-Escandell, Manuel ;
Kaneko, Katsumi ;
Rodriguez-Reinoso, Francisco .
NATURE COMMUNICATIONS, 2015, 6
[7]   Optimal wetting of active carbons for methane hydrate formation [J].
Celzard, A ;
Marêché, JF .
FUEL, 2006, 85 (7-8) :957-966
[8]   Kinetics of methane hydrate formation in the presence of activated carbon and nano-silica suspensions in pure water [J].
Govindaraj, Varun ;
Mech, Deepjyoti ;
Pandey, Gaurav ;
Nagarajan, R. ;
Sangwai, Jitendra S. .
JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2015, 26 :810-818
[9]   A remarkable elevation of freezing temperature of CCl4 in graphitic micropores [J].
Kaneko, K ;
Watanabe, A ;
Iiyama, T ;
Radhakrishan, R ;
Gubbins, KE .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (34) :7061-7063
[10]   Nanoporous Materials for the Onboard Storage of Natural Gas [J].
Kumar, K. Vasanth ;
Preuss, Kathrin ;
Titirici, Maria-Magdalena ;
Rodriguez-Reinoso, Francisco .
CHEMICAL REVIEWS, 2017, 117 (03) :1796-1825