Effects of Applied Magnetic Field on the Optical Properties and Binding Energies Spherical GaAs Quantum Dot with Donor Impurity

被引:17
作者
Edet, Collins Okon [1 ,2 ,3 ]
Al Bahadir, Emre [4 ]
Ungan, Fatih [4 ]
Ali, Norshamsuri [2 ]
Rusli, Nursalasawati [5 ]
Aljunid, Syed Alwee [2 ]
Endut, Rosdisham [2 ]
Asjad, Muhammad [6 ]
机构
[1] Univ Malaysia Perlis, Fac Appl & Human Sci, Arau 02600, Malaysia
[2] Univ Malaysia Perlis, Fac Elect Engn Technol, Arau 02600, Malaysia
[3] Cross River Univ Technol, Dept Phys, Calabar 540252, Nigeria
[4] Cumhuriyet Univ, Dept Phys, Fac Sci, TR-58140 Sivas, Turkey
[5] Univ Malaysia Perlis, Inst Engn Math, Arau 02600, Malaysia
[6] Khalifa Univ, Dept Math, Abu Dhabi 127788, U Arab Emirates
关键词
screened modified Kratzer potential (SMKP); refractive index; absorption coefficient; optical transitions; diagonalization method; DIATOMIC-MOLECULES; REFRACTIVE-INDEX; WAVE MECHANICS; ABSORPTION; MODEL; RING;
D O I
10.3390/nano12162741
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The screened modified Kratzer potential (SMKP) model is utilized to scrutinize the impacts of an applied magnetic field (MF) on the binding energies and linear and nonlinear optical properties spherical GaAs quantum dot with donor impurity (DI). To accomplish this goal, we have used the diagonalization method to numerically solve the Schrodinger equation under the effective mass approximation for obtaining the electron energy levels and related electronic wave functions. The expressions used for evaluating linear, third-order nonlinear, and total optical absorption coefficients and relative refractive index changes were previously derived within the compact density matrix method. It has been shown here that the MF and DI impacts the characteristics of the absorption coefficients and the refractive index changes. This study's results will find application in optoelectronics and related areas.
引用
收藏
页数:11
相关论文
共 59 条
  • [1] Bound state solutions of the Dirac equation for the generalized Cornell potential model
    Abu-Shady, M.
    Khokha, E. M.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (29):
  • [2] Non-relativistic quark model under external magnetic and Aharanov-Bohm (AB) fields in the presence of temperature-dependent confined Cornell potential
    Abu-Shady, M.
    Edet, C. O.
    Ikot, A. N.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2021, 99 (11) : 1024 - 1031
  • [3] Optical absorption and refractive index changes in a semiconductor quantum ring: Electric field and donor impurity effects
    Acosta, Ruben E.
    Morales, A. L.
    Duque, C. M.
    Mora-Ramos, M. E.
    Duque, C. A.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (04): : 744 - 754
  • [4] Optical properties of spherical quantum dot in the presence of donor impurity under the magnetic field
    Al, E. B.
    Kasapoglu, E.
    Sari, H.
    Sokmen, I
    [J]. PHYSICA B-CONDENSED MATTER, 2021, 613 (613)
  • [5] Zeeman splitting, Zeeman transitions and optical absorption of an electron confined in spherical quantum dots under the magnetic field
    Al, E. B.
    Kasapoglu, E.
    Sari, H.
    Sokmen, I
    [J]. PHILOSOPHICAL MAGAZINE, 2021, 101 (01) : 117 - 128
  • [6] Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field
    Al, E. B.
    Kasapoglu, E.
    Sakiroglu, S.
    Sari, H.
    Sokmen, I
    Duque, C. A.
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2020, 119
  • [7] Al EB., 2021, CUMHUR SCI J, V42, P694, DOI [10.17776/csj.927289, DOI 10.17776/csj.927289]
  • [8] Donor-impurity related photoionization cross section in GaAs/Ga1-xAlxAs concentric double quantum rings: Effects of geometry and hydrostatic pressure
    Baghramyan, H. M.
    Barseghyan, M. G.
    Kirakosyan, A. A.
    Laroze, D.
    Duque, C. A.
    [J]. PHYSICA B-CONDENSED MATTER, 2014, 449 : 193 - 198
  • [9] The Hulthen Potential Model for Hydrogen Atoms in Debye Plasma
    Bahar, M. K.
    Soylu, A.
    Poszwa, A.
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2016, 44 (10) : 2297 - 2306
  • [10] Berkdemir C., 2012, Theoretical Concepts of Quantum Mechanics, P225