Combining radiomics and deep convolutional neural network features from preoperative MRI for predicting clinically relevant genetic biomarkers in glioblastoma

被引:47
作者
Calabrese, Evan [1 ,2 ]
Rudie, Jeffrey D. [1 ]
Rauschecker, Andreas M. [1 ]
Villanueva-Meyer, Javier E. [1 ,2 ]
Clarke, Jennifer L. [3 ,4 ]
Solomon, David A. [5 ,6 ]
Cha, Soonmee [1 ]
机构
[1] Univ Calif San Francisco, Dept Radiol & Biomed Imaging, 350 Parnassus Ave,Suite 307H, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, C Ctr Intelligent Imaging, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Neurol, Div Neurooncol, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Dept Neurol Surg, Div Neurooncol, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Dept Pathol, San Francisco, CA 94143 USA
[6] Univ Calif San Francisco, Clin Canc Genom Lab, San Francisco, CA 94143 USA
基金
美国国家卫生研究院;
关键词
artificial intelligence; deep learning; glioblastoma; radiogenomics; radiomics; TARGETED THERAPY; IMAGE; TEMOZOLOMIDE; MUTATIONS; SURVIVAL; AREAS; ATRX; P53;
D O I
10.1093/noajnl/vdac060
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background. Glioblastoma is the most common primary brain malignancy, yet treatment options are limited, and prognosis remains guarded. Individualized tumor genetic assessment has become important for accurate prognosis and for guiding emerging targeted therapies. However, challenges remain for widespread tumor genetic testing due to costs and the need for tissue sampling. The aim of this study is to evaluate a novel artificial intelligence method for predicting clinically relevant genetic biomarkers from preoperative brain MRI in patients with glioblastoma. Methods. We retrospectively analyzed preoperative MRI data from 400 patients with glioblastoma, IDH-wildtype or WHO grade 4 astrocytoma, IDH mutant who underwent resection and genetic testing. Nine genetic biomarkers were assessed: hotspot mutations of IDH1 or TERT promoter, pathogenic mutations of TP53, PTEN, ATRX, or CDKN2A/B, MGMT promoter methylation, EGFR amplification, and combined aneuploidy of chromosomes 7 and 10. Models were developed to predict biomarker status from MRI data using radiomics features, convolutional neural network (CNN) features, and a combination of both. Results. Combined model performance was good for IDH1 and TERT promoter hotspot mutations, pathogenic mutations of ATRX and CDKN2A/B, and combined aneuploidy of chromosomes 7 and 10, with receiver operating characteristic area under the curve (ROC AUC) >0.85 and was fair for all other tested biomarkers with ROC AUC >0.7. Combined model performance was statistically superior to individual radiomics and CNN feature models for prediction chromosome 7 and 10 aneuploidy, MGMT promoter methylation, and PTEN mutation. Conclusions. Combining radiomics and CNN features from preoperative MRI yields improved noninvasive genetic biomarker prediction performance in patients with WHO grade 4 diffuse astrocytic gliomas.
引用
收藏
页数:11
相关论文
共 41 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[3]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[4]  
Baid U, 2021, Arxiv, DOI arXiv:2107.02314
[5]  
Bakas S, 2019, Arxiv, DOI [arXiv:1811.02629, 10.48550/arXiv.1811.02629, DOI 10.48550/ARXIV.1811.02629]
[6]  
Calabrese E, 2022, Arxiv, DOI [arXiv:2109.00356, 10.48550/arXiv.2109.00356, DOI 10.48550/ARXIV.2109.00356]
[7]   p16-Cdk4-Rb axis controls sensitivity to a cyclin-dependent kinase inhibitor PD0332991 in glioblastoma xenograft cells [J].
Cen, Ling ;
Carlson, Brett L. ;
Schroeder, Mark A. ;
Ostrem, Jamie L. ;
Kitange, Gaspar J. ;
Mladek, Ann C. ;
Fink, Stephanie R. ;
Decker, Paul A. ;
Wu, Wenting ;
Kim, Jung-Sik ;
Waldman, Todd ;
Jenkins, Robert B. ;
Sarkaria, Jann N. .
NEURO-ONCOLOGY, 2012, 14 (07) :870-881
[8]   Residual Convolutional Neural Network for the Determination of IDH Status in Low- and High-Grade Gliomas from MR Imaging [J].
Chang, Ken ;
Bai, Harrison X. ;
Zhou, Hao ;
Su, Chang ;
Bi, Wenya Linda ;
Agbodza, Ena ;
Kavouridis, Vasileios K. ;
Senders, Joeky T. ;
Boaro, Alessandro ;
Beers, Andrew ;
Zhang, Biqi ;
Capellini, Alexandra ;
Liao, Weihua ;
Shen, Qin ;
Li, Xuejun ;
Xiao, Bo ;
Cryan, Jane ;
Ramkissoon, Shakti ;
Ramkissoon, Lori ;
Ligon, Keith ;
Wen, Patrick Y. ;
Bindra, Ranjit S. ;
Woo, John ;
Arnaout, Omar ;
Gerstner, Elizabeth R. ;
Zhang, Paul J. ;
Rosen, Bruce R. ;
Yang, Li ;
Huang, Raymond Y. ;
Kalpathy-Cramer, Jayashree .
CLINICAL CANCER RESEARCH, 2018, 24 (05) :1073-1081
[9]   Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas [J].
Chang, P. ;
Grinband, J. ;
Weinberg, B. D. ;
Bardis, M. ;
Khy, M. ;
Cadena, G. ;
Su, M. -Y. ;
Cha, S. ;
Filippi, C. G. ;
Bota, D. ;
Baldi, P. ;
Poisson, L. M. ;
Jain, R. ;
Chow, D. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (07) :1201-1207
[10]   Immunohistochemical Analysis of ATRX, IDH1 and p53 in Glioblastoma and Their Correlations with Patient Survival [J].
Chaurasia, Ajay ;
Park, Sung-Hye ;
Seo, Jeong-Wook ;
Park, Chul-Kee .
JOURNAL OF KOREAN MEDICAL SCIENCE, 2016, 31 (08) :1208-1214