EXISTENCE OF GROUNDSTATES FOR A CLASS OF NONLINEAR CHOQUARD EQUATIONS

被引:12
作者
Moroz, Vitaly [1 ]
Van Schaftingen, Jean [2 ]
机构
[1] Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Catholic Univ Louvain, Inst Rech Math & Phys, B-1348 Louvain, Belgium
关键词
SCALAR FIELD-EQUATIONS; CRITICAL-POINTS; SYMMETRY; SYMMETRIZATION; COMPACTNESS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of a nontrivial solution u is an element of H-1(R-N) to the nonlinear Choquard equation Delta u + u = (I-alpha * F(u)) F'(u) in R-N, where I-alpha is a Riesz potential, under almost necessary conditions on the nonlinearity F in the spirit of Berestycki and Lions. This solution is a groundstate and has additional local regularity properties; if moreover F is even and monotone on (0, infinity), then u is of constant sign and radially symmetric.
引用
收藏
页码:6557 / 6579
页数:23
相关论文
共 44 条
  • [1] [Anonymous], S MATH
  • [2] Multiple critical points for a class of nonlinear functionals
    Azzollini, A.
    d'Avenia, P.
    Pomponio, A.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (03) : 507 - 523
  • [3] On the Schrodinger-Maxwell equations under the effect of a general nonlinear term
    Azzollini, A.
    d'Avenia, P.
    Pomponio, A.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02): : 779 - 791
  • [4] Partial symmetry of least energy nodal solutions to some variational problems
    Bartsch, T
    Weth, T
    Willew, M
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1): : 1 - 18
  • [5] Normalized solutions of nonlinear Schrodinger equations
    Bartsch, Thomas
    de Valeriola, Sebastien
    [J]. ARCHIV DER MATHEMATIK, 2013, 100 (01) : 75 - 83
  • [6] BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
  • [7] BREZIS H, 1979, J MATH PURE APPL, V58, P137
  • [8] Brezis H., 2011, FUNCTIONAL ANAL SOBO
  • [9] An approach to symmetrization via polarization
    Brock, F
    Solynin, AY
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (04) : 1759 - 1796
  • [10] Symmetry and monotonicity of least energy solutions
    Byeon, Jaeyoung
    Jeanjean, Louis
    Maris, Mihai
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (04) : 481 - 492