THE CONE OF LOWER SEMICONTINUOUS TRACES ON A C*-ALGEBRA

被引:93
作者
Elliott, George A. [1 ]
Robert, Leonel [2 ]
Santiago, Luis [3 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ Copenhagen, Dept Math Sci, DK-1168 Copenhagen, Denmark
[3] Univ Autonoma Barcelona, Dept Matemat, Barcelona, Spain
关键词
CUNTZ SEMIGROUP;
D O I
10.1353/ajm.2011.0027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The cone of lower semicontinuous traces is studied with a view to its use as an invariant. Its properties include compactness, Hausdorffness, and continuity with respect to inductive limits. A suitable notion of dual cone is given. The cone of lower semicontinuous 2-quasitraces on a (non-exact) C*-algebra is considered as well. These results are applied to the study of the Cuntz semigroup. It is shown that if a C*-algebra absorbs the Jiang-Su algebra, then the subsemigroup of its Cuntz semigroup consisting of the purely non-compact elements is isomorphic to the dual cone of the cone of lower semicontinuous 2-quasitraces. This yields a computation of the Cuntz semigroup for the following two classes of C*-algebras: C*-algebras that absorb the Jiang-Su algebra and have no non-zero simple subquotients, and simple C*-algebras that absorb the Jiang-Su algebra.
引用
收藏
页码:969 / 1005
页数:37
相关论文
共 21 条
[1]  
Alfsen E. M, 1971, Ergeb. Math. Grenzgeb., V57
[2]  
[Anonymous], 1969, Lectures on Analysis.
[3]   Non-simple purely infinite C*-algebras:: the Hausdorff case [J].
Blanchard, E ;
Kirchberg, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 207 (02) :461-513
[4]   The Cuntz semigroup, the Elliott conjecture, and dimension functions on C *-algebras [J].
Brown, Nathanial P. ;
Perera, Francesc ;
Toms, Andrew S. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 621 :191-211
[5]  
CIUPERCA A., 2008, INT MATH RES NOT IMR, V2008, P33
[6]  
Ciuperca A, 2010, J OPERAT THEOR, V64, P155
[7]   The Cuntz semigroup as an invariant for C*-algebras [J].
Coward, Kristofer T. ;
Elliott, George A. ;
Ivanescu, Cristian .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 623 :161-193
[8]   EQUIVALENCE AND TRACES ON C-STAR-ALGEBRAS [J].
CUNTZ, J ;
PEDERSEN, GK .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 33 (02) :135-164
[9]   Regularity properties in the classification program for separable amenable C*-algebras [J].
Elliott, George A. ;
Toms, Andrew S. .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 45 (02) :229-245
[10]  
Gierz G., 1980, COMPENDIUM CONTINUOU