Infinitely many positive solutions of the diophantine equation x2-kxy+y2+x=0

被引:4
作者
Marlewski, A
Zarzycki, P
机构
[1] Univ Gdansk, Dept Math, PL-80952 Gdansk, Poland
[2] Poznan Univ Tech, Inst Math, PL-60965 Poznan, Poland
关键词
diophantine equations; computer algebra system; pell equation;
D O I
10.1016/S0898-1221(04)90010-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the equation x(2) - kxy+y(2) + x = 0 with k is an element of N+ has an infinite number of positive integer solutions x and y if and only if k = 3. For k = 3 the quotient x/y is asymptotically equal to (3 + root5)/2 or (3 - root5)/2. Results of the paper are based on data obtained via Computer Algebra System (DERIVE 5). Some DERIVE procedures presented in the paper made it possible to discover interesting regularities concerning simple continued fractions of certain numbers. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 50 条
  • [41] The exponential Diophantine equation x2+(3n 2+1) y = (4n 2+1) z
    Wang, Jianping
    Wang, Tingting
    Zhang, Wenpeng
    [J]. MATHEMATICA SLOVACA, 2014, 64 (05) : 1145 - 1152
  • [42] Triangular numbers in the associated Pell sequence and diophantine equations x2 (x+1)2=8 y2±4
    Prasad, VSR
    Rao, BS
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2002, 33 (11) : 1643 - 1648
  • [43] On the Exponential Diophantine Equation (an-1) (bn-1) = x2
    Noubissie, Armand
    Togbe, Alain
    Zhang, Zhongfeng
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2020, 27 (02) : 161 - 166
  • [44] On the exponential Diophantine equation (an-1)(bn-1) = x2
    Ishii, Katsumasa
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 89 (1-2): : 253 - 256
  • [45] ON THE EQUATION y2 = x6 + k
    Nguyen Xuan Tho
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (06) : 2167 - 2178
  • [46] On the exponential diophantine equation (an-1)(bn-1) = x2
    Lan, Li
    Szalay, Laszlo
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 77 (3-4): : 465 - 470
  • [47] POSITIVE INTEGER SOLUTIONS OF THE DIOPHANTINE EQUATIONS x2-5Fnxy-5(-1)ny2 = ±5r
    Keskin, Refik
    Karaatli, Olcay
    Siar, Zafer
    [J]. MISKOLC MATHEMATICAL NOTES, 2013, 14 (03) : 959 - 972
  • [48] On the Diophantine equation (5pn2 -1)x + (p(p-5)n2 +1)y = (pn)z
    Alahmadi, Adel
    Luca, Florian
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2022, 65 (01): : 3 - 12
  • [49] SOLUTIONS OF THE PELL EQUATION x2 - (a2+2a) y2 = N VIA GENERALIZED FIBONACCI AND LUCAS NUMBERS
    Peker, Bilge
    Senay, Hasan
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (04) : 721 - 726
  • [50] On the rational solutions of y2 = x3
    Sharma, Richa
    Bhatter, Sanjay
    [J]. NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (03) : 130 - 142