Infinitely many positive solutions of the diophantine equation x2-kxy+y2+x=0

被引:4
|
作者
Marlewski, A
Zarzycki, P
机构
[1] Univ Gdansk, Dept Math, PL-80952 Gdansk, Poland
[2] Poznan Univ Tech, Inst Math, PL-60965 Poznan, Poland
关键词
diophantine equations; computer algebra system; pell equation;
D O I
10.1016/S0898-1221(04)90010-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the equation x(2) - kxy+y(2) + x = 0 with k is an element of N+ has an infinite number of positive integer solutions x and y if and only if k = 3. For k = 3 the quotient x/y is asymptotically equal to (3 + root5)/2 or (3 - root5)/2. Results of the paper are based on data obtained via Computer Algebra System (DERIVE 5). Some DERIVE procedures presented in the paper made it possible to discover interesting regularities concerning simple continued fractions of certain numbers. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 50 条
  • [1] ON THE DIOPHANTINE EQUATION x2-kxy+y2+2n=0
    Keskin, Refik
    Karaatli, Olcay
    Siar, Zafer
    MISKOLC MATHEMATICAL NOTES, 2012, 13 (02) : 375 - 388
  • [2] On the Diophantine equation x2 − kxy + y2 − 2n = 0
    Refik Keskin
    Zafer Şiar
    Olcay Karaatli
    Czechoslovak Mathematical Journal, 2013, 63 : 783 - 797
  • [3] On the Diophantine equation x2 - kxy plus y2-2n=0
    Keskin, Refik
    Siar, Zafer
    Karaatli, Olcay
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 783 - 797
  • [4] A Generalized Fibonacci Sequence and the Diophantine Equations x(2) +/- kxy - y(2) +/- x = 0
    Bahramian, Mojtaba
    Daghigh, Hassan
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2013, 8 (02): : 111 - 121
  • [5] On the Diophantine Equation Ax2 - KXY plus Y2 + Lx=0
    Urrutia, J. D.
    Aranas, J. M. E.
    Lara, J. A. C. L.
    Maceda, D. L. P.
    3RD INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS 2015 (SCITECH 2015), 2015, 622
  • [6] On the Diophantine equation Gn(x) = Gm(y) withQ(x, y)=0\
    Fuchs, Clemens
    Petho, Attila
    Tich, Robert F.
    DIOPHANTINE APPROXIMATION: FESTSCHRIFT FOR WOLFGANG SCHMIDT, 2008, 16 : 199 - +
  • [7] ON THE DIOPHANTINE EQUATION 2(x) = x(2)
    Gica, Alexandru
    Luca, Florian
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2012, 46 (01) : 109 - 116
  • [8] On the Positive Integral Solutions of the Diophantine Equation x3 + by+1-xyz=0
    Luca, Florian
    Togbe, Alain
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2008, 31 (02) : 129 - 134
  • [9] On the Diophantine equation z2 = f(x)2 ± f(y)2
    Ulas, Maciej
    Togbe, Alain
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2010, 76 (1-2): : 183 - 201
  • [10] The Diophantine equation x2
    Nguyen Xuan Tho
    ANNALES MATHEMATICAE ET INFORMATICAE, 2021, 54 : 121 - 139