Entire mean curvature flows of graphs

被引:0
|
作者
Han, Xiaoli [1 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
关键词
graph; Jacobian of the projection;
D O I
10.2140/pjm.2008.236.333
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the evolution of the graph of f : R-n -> R-n in R-n x R-n by the mean curvature flow. We prove that the flow exists smoothly for all time if the differential of f has a positive lower bound. Moreover, at each time, the flow remains the graph of a map f(t).
引用
收藏
页码:333 / 339
页数:7
相关论文
共 50 条
  • [41] A note on radial graphs with constant mean curvature
    López, R
    MANUSCRIPTA MATHEMATICA, 2003, 110 (01) : 45 - 54
  • [42] Graphs of constant mean curvature in hyperbolic space
    López, R
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2001, 20 (01) : 59 - 75
  • [43] Regularity for graphs with bounded anisotropic mean curvature
    Antonio De Rosa
    Riccardo Tione
    Inventiones mathematicae, 2022, 230 : 463 - 507
  • [44] ON A CLASS OF GRAPHS WITH PRESCRIBED MEAN-CURVATURE
    DUC, DM
    SALAVESSA, IMC
    MANUSCRIPTA MATHEMATICA, 1994, 82 (3-4) : 227 - 239
  • [45] Geodesic graphs with constant mean curvature in spheres
    Fornari, S
    de Lira, JHS
    Ripoll, J
    GEOMETRIAE DEDICATA, 2002, 90 (01) : 201 - 216
  • [46] Uniqueness results for constant mean curvature graphs
    Mazet, Laurent
    PACIFIC JOURNAL OF MATHEMATICS, 2007, 230 (02) : 365 - 380
  • [47] Geodesic Graphs with Constant Mean Curvature in Spheres
    Susana Fornari
    Jorge H. S. de Lira
    Jaime Ripoll
    Geometriae Dedicata, 2002, 90 : 201 - 216
  • [48] Fractional mean curvature flow of Lipschitz graphs
    Cesaroni, Annalisa
    Novaga, Matteo
    MANUSCRIPTA MATHEMATICA, 2023, 170 (3-4) : 427 - 451
  • [49] Sharp estimates for mean curvature flow of graphs
    Colding, TH
    Minicozzi, WP
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2004, 574 : 187 - 195
  • [50] Fractional mean curvature flow of Lipschitz graphs
    Annalisa Cesaroni
    Matteo Novaga
    manuscripta mathematica, 2023, 170 : 427 - 451