An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends

被引:229
作者
Mastoi, Muhammad Shahid [1 ]
Zhuang, Shenxian [1 ]
Munir, Hafiz Mudassir [2 ]
Haris, Malik [3 ]
Hassan, Mannan [1 ]
Usman, Muhammad [1 ]
Bukhari, Syed Sabir Hussain [2 ]
Ro, Jong-Suk [4 ,5 ]
机构
[1] Southwest Jiaotong Univ, Sch Elect Engn, Chengdu 611756, Sichuan, Peoples R China
[2] Sukkur IBA Univ, Dept Elect Engn, Sukkur 65200, Pakistan
[3] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 611756, Sichuan, Peoples R China
[4] Chung Ang Univ, Dept Intelligent Energy & Ind, Seoul 06910, South Korea
[5] Chung Ang Univ, Sch Elect & Elect Engn, Seoul 06910, South Korea
基金
新加坡国家研究基金会;
关键词
Smart charging; Electric vehicles; Charging infrastructure; Electric vehicle charging stations; RENEWABLE ENERGY-SOURCES; DISTRIBUTION NETWORKS; DISTRIBUTION-SYSTEMS; OPTIMIZATION MODEL; GRID TECHNOLOGIES; IMPACT; MANAGEMENT; COST; INTEGRATION; CHALLENGES;
D O I
10.1016/j.egyr.2022.09.011
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A significant transformation occurs globally as transportation switches from fossil fuel-powered to zero and ultra-low tailpipe emissions vehicles. The transition to the electric vehicle requires an infrastructure of charging stations (CSs) with information technology, ingenious, distributed energy generation units, and favorable government policies. This paper discusses the key factors when planning electric vehicle charging infrastructure. This paper provides information about planning and technological developments that can be used to improve the design and implementation of charging station infrastructure. A comprehensive review of the current electric vehicle scenario, the impact of EVs on grid integration, and Electric Vehicle optimal allocation provisioning are presented. In particular, this paper analyzes research and developments related to charging station infrastructure, challenges, and efforts to standardize the infrastructure to enhance future research work. In addition, the optimal placement of rapid charging stations is based on economic benefits and grid impacts. It also describes the challenges of adoption. On the other hand, future trends in the field, such as energy procurement from renewable sources and cars' benefits to grid technology, are also presented and discussed.
引用
收藏
页码:11504 / 11529
页数:26
相关论文
共 183 条
[1]   Routing and charging of electric vehicles: Literature review [J].
Abid, Meryem ;
Tabaa, Mohammed ;
Chakir, Asmae ;
Hachimi, Hanaa .
ENERGY REPORTS, 2022, 8 :556-578
[2]   A Review of the Electric Vehicle Charging Techniques, Standards, Progression and Evolution of EV Technologies in Germany [J].
Ahmad, Aqueel ;
Khan, Zeeshan Ahmad ;
Alam, Mohammad Saad ;
Khateeb, Siddique .
SMART SCIENCE, 2018, 6 (01) :36-53
[3]  
Ahmed M.A., 2017, P 6 ACM S DEV ANAL I, DOI DOI 10.1145/3132340.3132352
[4]   Optimal allocation for electric vehicle charging stations using Trip Success Ratio [J].
Alhazmi, Yassir A. ;
Mostafa, Haytham A. ;
Salama, Magdy M. A. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2017, 91 :101-116
[5]   The role of communication systems in smart grids: Architectures, technical solutions and research challenges [J].
Ancillotti, Emilio ;
Bruno, Raffaele ;
Conti, Marco .
COMPUTER COMMUNICATIONS, 2013, 36 (17-18) :1665-1697
[6]  
Anele A.O., 2015, J PHYS CONFER SER IO, V12010
[7]  
[Anonymous], 2015, SMART ELECT VEHICLE
[8]  
[Anonymous], 2010, US Dep. Energy, p1
[9]  
[Anonymous], 2012, ELECTRON POWER
[10]  
[Anonymous], 2010, Tech. Rep, P1