A non-Hermitian PT symmetric Bose-Hubbard model:: eigenvalue rings from unfolding higher-order exceptional points

被引:197
作者
Graefe, E. M. [1 ]
Guenther, U. [2 ]
Korsch, H. J. [1 ]
Niederle, A. E. [1 ]
机构
[1] Tech Univ Kaiserslautern, D-67663 Kaiserslautern, Germany
[2] Res Ctr Dresden Rossendorf, D-01314 Dresden, Germany
关键词
D O I
10.1088/1751-8113/41/25/255206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a non-Hermitian PT symmetric generalization of an N-particle, two-mode Bose-Hubbard system, modeling for example a Bose-Einstein condensate in a double well potential coupled to a continuum via a sink in one of the wells and a source in the other. The effect of the interplay between the particle interaction and the non-Hermiticity on characteristic features of the spectrum is analyzed drawing special attention to the occurrence and unfolding of exceptional points (EPs). We find that for vanishing particle interaction there are only two EPs of order N + 1 which under perturbation unfold either into [(N + 1)/2] eigenvalue pairs (and in the case of N + 1 odd, into an additional zero-eigenvalue) or into eigenvalue triplets (third-order eigenvalue rings) and (N + 1) mod 3 single eigenvalues, depending on the direction of the perturbation in parameter space. This behavior is described analytically using perturbational techniques. More general EP unfoldings into eigenvalue rings up to (N + 1)th order are indicated.
引用
收藏
页数:26
相关论文
共 75 条
[41]  
Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]
[42]   Unfolding a diabolic point: a generalized crossing scenario [J].
Keck, F ;
Korsch, HJ ;
Mossmann, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (08) :2125-2137
[43]   Collapse of the Keldysh chains and stability of continuous nonconservative systems [J].
Kirillov, ON ;
Seyranian, AP .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2004, 64 (04) :1383-1407
[44]   A Krein space approach to PT-symmetry [J].
Langer, H ;
Tretter, C .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (10) :1113-1120
[45]   Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation [J].
Livi, Roberto ;
Franzosi, Roberto ;
Oppo, Gian-Luca .
PHYSICAL REVIEW LETTERS, 2006, 97 (06)
[46]   Nongeneric eigenvalue perturbations of Jordan blocks [J].
Ma, YY ;
Edelman, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 273 :45-63
[47]   Quantum phase-space picture of Bose-Einstein condensates in a double well [J].
Mahmud, KW ;
Perry, H ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2005, 71 (02)
[48]   Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential [J].
Milburn, GJ ;
Corney, J ;
Wright, EM ;
Walls, DF .
PHYSICAL REVIEW A, 1997, 55 (06) :4318-4324
[49]   ASSOCIATION OF RESONANCE STATES WITH THE INCOMPLETE SPECTRUM OF FINITE COMPLEX-SCALED HAMILTONIAN MATRICES [J].
MOISEYEV, N ;
FRIEDLAND, S .
PHYSICAL REVIEW A, 1980, 22 (02) :618-624
[50]   DEGENERACY AND CROSSING OF RESONANCE ENERGY SURFACES [J].
MONDRAGON, A ;
HERNANDEZ, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5595-5611