A non-Hermitian PT symmetric Bose-Hubbard model:: eigenvalue rings from unfolding higher-order exceptional points

被引:188
作者
Graefe, E. M. [1 ]
Guenther, U. [2 ]
Korsch, H. J. [1 ]
Niederle, A. E. [1 ]
机构
[1] Tech Univ Kaiserslautern, D-67663 Kaiserslautern, Germany
[2] Res Ctr Dresden Rossendorf, D-01314 Dresden, Germany
关键词
D O I
10.1088/1751-8113/41/25/255206
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a non-Hermitian PT symmetric generalization of an N-particle, two-mode Bose-Hubbard system, modeling for example a Bose-Einstein condensate in a double well potential coupled to a continuum via a sink in one of the wells and a source in the other. The effect of the interplay between the particle interaction and the non-Hermiticity on characteristic features of the spectrum is analyzed drawing special attention to the occurrence and unfolding of exceptional points (EPs). We find that for vanishing particle interaction there are only two EPs of order N + 1 which under perturbation unfold either into [(N + 1)/2] eigenvalue pairs (and in the case of N + 1 odd, into an additional zero-eigenvalue) or into eigenvalue triplets (third-order eigenvalue rings) and (N + 1) mod 3 single eigenvalues, depending on the direction of the perturbation in parameter space. This behavior is described analytically using perturbational techniques. More general EP unfoldings into eigenvalue rings up to (N + 1)th order are indicated.
引用
收藏
页数:26
相关论文
共 75 条
  • [1] Pseudo-hermiticity and theory of singular perturbations
    Albeverio, S
    Kuzhel, S
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2004, 67 (03) : 223 - 238
  • [2] Dynamics of a two-mode Bose-Einstein condensate beyond mean-field theory
    Anglin, JR
    Vardi, A
    [J]. PHYSICAL REVIEW A, 2001, 64 (01) : 9
  • [3] [Anonymous], Encyclopaedia of Mathematics
  • [4] [Anonymous], 1985, OPERATOR THEORY
  • [5] Azizov T.Ya., 1989, LINEAR OPERATORS SPA
  • [6] A complex periodic QES potential and exceptional points
    Bagchi, B.
    Quesne, C.
    Roychoudhury, R.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (02)
  • [7] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [8] Real spectra in non-Hermitian Hamiltonians having PT symmetry
    Bender, CM
    Boettcher, S
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (24) : 5243 - 5246
  • [9] PT-symmetric quantum mechanics
    Bender, CM
    Boettcher, S
    Meisinger, PN
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (05) : 2201 - 2229
  • [10] Generalized PT symmetry and real spectra
    Bender, CM
    Berry, MV
    Mandilara, A
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (31): : L467 - L471