Parameter Identification for Lithium-Ion Battery Based on Hybrid Genetic-Fractional Beetle Swarm Optimization Method

被引:4
|
作者
Guo, Peng [1 ]
Wu, Xiaobo [2 ]
Lopes, Antonio M. [3 ]
Cheng, Anyu [1 ]
Xu, Yang [1 ]
Chen, Liping [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[2] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[3] Univ Porto, Fac Engn, LAETA INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
关键词
FO equivalent circuit; parameter identification; genetic algorithm; beetle swarm optimization;
D O I
10.3390/math10173056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a fractional order (FO) impedance model for lithium-ion batteries and a method for model parameter identification. The model is established based on electrochemical impedance spectroscopy (EIS). A new hybrid genetic-fractional beetle swarm optimization (HGA-FBSO) scheme is derived for parameter identification, which combines the advantages of genetic algorithms (GA) and beetle swarm optimization (BSO). The approach leads to an equivalent circuit model being able to describe accurately the dynamic behavior of the lithium-ion battery. Experimental results illustrate the effectiveness of the proposed method, yielding voltage estimation root-mean-squared error (RMSE) of 10.5 mV and mean absolute error (MAE) of 0.6058%. This corresponds to accuracy improvements of 32.26% and 7.89% for the RMSE, and 43.83% and 13.67% for the MAE, when comparing the results of the new approach to those obtained with the GA and the FBSO methods, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Recursive Parameter Identification of Lithium-Ion Battery for EVs Based on Equivalent Circuit Model
    Dai, Haifeng
    Wei, Xuezhe
    Sun, Zechang
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (12) : 2813 - 2818
  • [42] CPSO-Based Parameter-Identification Method for the Fractional-Order Modeling of Lithium-Ion Batteries
    Yu, Zhihao
    Huai, Ruituo
    Li, Hongyu
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2021, 36 (10) : 11109 - 11123
  • [43] A hybrid kernel extreme learning machine modeling method based on improved dung beetle algorithm optimization for lithium-ion battery state of health estimation
    Mo, Daijiang
    Wang, Shunli
    Zhang, Mengyun
    Fan, Yongcun
    Wang, Yangtao
    Zeng, Jiawei
    IONICS, 2024, 30 (07) : 3995 - 4009
  • [44] Identification of Fractional Differential Models for Lithium-ion Polymer Battery Dynamics
    Jiang, Yunfeng
    Xia, Bing
    Zhao, Xin
    Truong Nguyen
    Mi, Chris
    de Callafon, Raymond A.
    IFAC PAPERSONLINE, 2017, 50 (01): : 405 - 410
  • [45] Online Parameter Identification for Fractional Order Model of Lithium Ion Battery via Adaptive Genetic Algorithm
    Guo, Bin
    Sun, Huanli
    Zhao, Ziliang
    Liu, Yixin
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1227 - 1232
  • [46] Parameter optimization of an electrochemical and thermal model for a lithium-ion commercial battery
    Munoz, P. M.
    Humana, R. M.
    Falaguerra, T.
    Correa, G. aa
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [47] Lithium-Ion Battery Thermal Parameter Identification and Core Temperature Estimation
    Saqli, Khadija
    Bouchareb, Houda
    Oudghiri, Mohammed
    M'sirdi, Nacer Kouider
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2023, 26 (04):
  • [48] Dual particle swarm optimization based data-driven state of health estimation method for lithium-ion battery
    Liu, Xingtao
    Liu, Xiaojian
    Fang, Leichao
    Wu, Muyao
    Wu, Ji
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [49] State of Charge Estimation of a Lithium-Ion Battery for Electric Vehicle based on Particle Swarm Optimization
    Ismail, Nur Hazima Faezaa
    Toha, Siti Fauziah
    2013 IEEE INTERNATIONAL CONFERENCE ON SMART INSTRUMENTATION, MEASUREMENT AND APPLICATIONS (ICSIMA 2013), 2013,
  • [50] Life-cycle parameter identification method of an electrochemical model for lithium-ion battery pack
    Yu, Hanqing
    Li, Junfu
    Ji, Yukun
    Pecht, Michael
    JOURNAL OF ENERGY STORAGE, 2022, 47