Parameter Identification for Lithium-Ion Battery Based on Hybrid Genetic-Fractional Beetle Swarm Optimization Method

被引:4
|
作者
Guo, Peng [1 ]
Wu, Xiaobo [2 ]
Lopes, Antonio M. [3 ]
Cheng, Anyu [1 ]
Xu, Yang [1 ]
Chen, Liping [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[2] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[3] Univ Porto, Fac Engn, LAETA INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
关键词
FO equivalent circuit; parameter identification; genetic algorithm; beetle swarm optimization;
D O I
10.3390/math10173056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a fractional order (FO) impedance model for lithium-ion batteries and a method for model parameter identification. The model is established based on electrochemical impedance spectroscopy (EIS). A new hybrid genetic-fractional beetle swarm optimization (HGA-FBSO) scheme is derived for parameter identification, which combines the advantages of genetic algorithms (GA) and beetle swarm optimization (BSO). The approach leads to an equivalent circuit model being able to describe accurately the dynamic behavior of the lithium-ion battery. Experimental results illustrate the effectiveness of the proposed method, yielding voltage estimation root-mean-squared error (RMSE) of 10.5 mV and mean absolute error (MAE) of 0.6058%. This corresponds to accuracy improvements of 32.26% and 7.89% for the RMSE, and 43.83% and 13.67% for the MAE, when comparing the results of the new approach to those obtained with the GA and the FBSO methods, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Physics-based parameter identification of an electrochemical model for lithium-ion batteries with two-population optimization method
    Tian, Aina
    Dong, Kailang
    Yang, Xiao-Guang
    Wang, Yuqin
    He, Luyao
    Gao, Yang
    Jiang, Jiuchun
    APPLIED ENERGY, 2025, 378
  • [32] Electrochemical modeling and parameter identification based on bacterial foraging optimization algorithm for lithium-ion batteries
    Yan Ma
    Jingpei Ru
    Mingyue Yin
    Hong Chen
    Weitao Zheng
    Journal of Applied Electrochemistry, 2016, 46 : 1119 - 1131
  • [33] Electrochemical modeling and parameter identification based on bacterial foraging optimization algorithm for lithium-ion batteries
    Ma, Yan
    Ru, Jingpei
    Yin, Mingyue
    Chen, Hong
    Zheng, Weitao
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2016, 46 (11) : 1119 - 1131
  • [34] A novel fractional order model based state-of-charge estimation method for lithium-ion battery
    Mu, Hao
    Xiong, Rui
    Zheng, Hongfei
    Chang, Yuhua
    Chen, Zeyu
    APPLIED ENERGY, 2017, 207 : 384 - 393
  • [35] Modeling and Simulation Research on Lithium-ion Battery in Electric Vehicles based on Genetic Algorithm
    Lin, Cheng
    Zhang, Xiaohua
    CURRENT DEVELOPMENT OF MECHANICAL ENGINEERING AND ENERGY, PTS 1 AND 2, 2014, 494-495 : 246 - 249
  • [36] Advanced Fractional-Order Lithium-Ion Capacitor Model With Time-Domain Parameter Identification Method
    Song, Shuang
    Zhang, Xiong
    An, Yabin
    Ma, Yanwei
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (12) : 13808 - 13817
  • [37] Hybrid Estimation Algorithm for Lithium-ion Battery based on PI Observer
    Huang, Denggao
    Wang, Yuehui
    Zhao, Jing
    Wang, Xu
    Zhu, Zhongwen
    Wang, Tong
    Zhou, Yilu
    Jin, Peng
    Li, Cheng
    IFAC PAPERSONLINE, 2020, 53 (06): : 13 - 18
  • [38] Parameter Identification for Electrochemical Models of Lithium-Ion Batteries Using Bayesian Optimization
    Pi, Jianzong
    da Silva, Samuel Filgueira
    Ozkan, Mehmet Fatih
    Gupta, Abhishek
    Canova, Marcello
    IFAC PAPERSONLINE, 2024, 58 (28): : 180 - 185
  • [39] An Information Analysis Based Online Parameter Identification Method for Lithium-ion Batteries in Electric Vehicles
    Guo, Ruohan
    Shen, Weixiang
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (07) : 7095 - 7105
  • [40] Systematic experimental pulse test investigation for parameter identification of an equivalent circuit based lithium-ion battery model
    Boettiger, Michael
    Paulitschke, Martin
    Bocklisch, Thilo
    11TH INTERNATIONAL RENEWABLE ENERGY STORAGE CONFERENCE, IRES 2017, 2017, 135 : 337 - 346