Parameter Identification for Lithium-Ion Battery Based on Hybrid Genetic-Fractional Beetle Swarm Optimization Method

被引:4
|
作者
Guo, Peng [1 ]
Wu, Xiaobo [2 ]
Lopes, Antonio M. [3 ]
Cheng, Anyu [1 ]
Xu, Yang [1 ]
Chen, Liping [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Coll Automat, Chongqing 400065, Peoples R China
[2] Hefei Univ Technol, Sch Elect Engn & Automat, Hefei 230009, Peoples R China
[3] Univ Porto, Fac Engn, LAETA INEGI, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
关键词
FO equivalent circuit; parameter identification; genetic algorithm; beetle swarm optimization;
D O I
10.3390/math10173056
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a fractional order (FO) impedance model for lithium-ion batteries and a method for model parameter identification. The model is established based on electrochemical impedance spectroscopy (EIS). A new hybrid genetic-fractional beetle swarm optimization (HGA-FBSO) scheme is derived for parameter identification, which combines the advantages of genetic algorithms (GA) and beetle swarm optimization (BSO). The approach leads to an equivalent circuit model being able to describe accurately the dynamic behavior of the lithium-ion battery. Experimental results illustrate the effectiveness of the proposed method, yielding voltage estimation root-mean-squared error (RMSE) of 10.5 mV and mean absolute error (MAE) of 0.6058%. This corresponds to accuracy improvements of 32.26% and 7.89% for the RMSE, and 43.83% and 13.67% for the MAE, when comparing the results of the new approach to those obtained with the GA and the FBSO methods, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Parameter optimization of an electrochemical and thermal model for a lithium-ion commercial battery
    Munoz, P. M.
    Humana, R. M.
    Falaguerra, T.
    Correa, G. aa
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [22] Enhancing battery management for HEVs and EVs: A hybrid approach for parameter identification and voltage estimation in lithium-ion battery models
    Khosravi, Nima
    Dowlatabadi, Masrour
    Abdelghany, Muhammad Bakr
    Tostado-Veliz, Marcos
    Jurado, Francisco
    APPLIED ENERGY, 2024, 356
  • [23] Novel Parameter Identification Method for Lithium-Ion Batteries Based on Curve Fitting
    Lukic, Milos
    Giangrande, Paolo
    Klumpner, Christian
    Galea, Michael
    2020 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2020,
  • [24] Parameter Identification of Lithium-ion Battery Based on Multi-innovation Least Squares Algorithm
    Wei Z.
    Yuan K.
    Cheng L.
    Wang C.
    Xu H.
    Sun G.
    Zang H.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2019, 43 (15): : 139 - 145
  • [25] A Hybrid Data-Driven and Model-Based Method for Modeling and Parameter Identification of Lithium-Ion Batteries
    Gou, Bin
    Xu, Yan
    Feng, Xue
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2023, 59 (06) : 7635 - 7645
  • [26] High-Precision Parameter Identification of Lithium-ion Battery Based on Voltage Signal Reconstruction
    Wen, Fazheng
    Zhu, Rui
    Zhang, Junming
    Gong, Sizhao
    Duan, Bin
    Zhang, Chenghui
    2019 3RD CONFERENCE ON VEHICLE CONTROL AND INTELLIGENCE (CVCI), 2019, : 64 - 68
  • [27] Lithium-Ion Battery Parameter Identification and State of Charge Estimation based on Equivalent Circuit Model
    Chang, Jiang
    Wei, Zhongbao
    He, Hongwen
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 1490 - 1495
  • [28] Electrochemical Model Parameter Identification of Lithium-Ion Battery with Temperature and Current Dependence
    Chen, Long
    Xu, Ruyu
    Rao, Weining
    Li, Huanhuan
    Wang, Ya-Ping
    Yang, Tao
    Jiang, Hao-Bin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2019, 14 (05): : 4124 - 4143
  • [29] Parameter estimation of an electrochemistry-based lithium-ion battery model
    Masoudi, Ramin
    Uchida, Thomas
    McPhee, John
    JOURNAL OF POWER SOURCES, 2015, 291 : 215 - 224
  • [30] A set-membership algorithm based parameter identification method for lithium-ion batteries
    Jin, Qi
    Xiong, Rui
    Mu, Hao
    Wang, Jun
    CLEANER ENERGY FOR CLEANER CITIES, 2018, 152 : 580 - 585