Latin squares with restricted transversals

被引:1
作者
Egan, Judith [1 ]
Wanless, Ian M. [1 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
关键词
Latin square; transversal; bachelor square; orthogonal mate; ORTHOGONAL MATES; PLEXES;
D O I
10.1002/jcd.20297
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for all odd m >= 3 there exists a latin square of order 3 m that contains an (m - 1) x m latin subrectangle consisting of entries not in any transversal. We prove that for all even n >= 10 there exists a latin square of order n in which there is at least one transversal, but all transversals coincide on a single entry. A corollary is a new proof of the existence of a latin square without an orthogonal mate, for all odd orders n >= 11. Finally, we report on an extensive computational study of transversal-free entries and sets of disjoint transversals in the latin squares of order n <= 9. In particular, we count the number of species of each order that possess an orthogonal mate. (C) 2011 Wiley Periodicals, Inc. J Combin Designs 20:124-141, 2012
引用
收藏
页码:124 / 141
页数:18
相关论文
共 50 条
[31]   Limits of Latin Squares [J].
Garbe, Frederik ;
Hancock, Robert ;
Hladky, Jan ;
Sharifzadeh, Maryam .
DISCRETE ANALYSIS, 2023, :1-66
[32]   Quasirandom Latin squares [J].
Cooper, Jacob W. ;
Kral, Daniel ;
Lamaison, Ander ;
Mohr, Samuel .
RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (02) :298-308
[33]   On the Number of Latin Squares [J].
Brendan D. McKay ;
Ian M. Wanless .
Annals of Combinatorics, 2005, 9 :335-344
[34]   On the number of Latin squares [J].
McKay, Brendan D. ;
Wanless, Ian M. .
ANNALS OF COMBINATORICS, 2005, 9 (03) :335-344
[35]   Existence of r-self-orthogonal latin squares [J].
Xu, YQ ;
Chang, YX .
DISCRETE MATHEMATICS, 2006, 306 (01) :124-146
[36]   A few more r-orthogonal Latin squares [J].
Zhu, L ;
Zhang, H .
DISCRETE MATHEMATICS, 2001, 238 (1-3) :183-191
[37]   The spectrum for large sets of resolvable idempotent Latin squares [J].
Li, Xiangqian ;
Chang, Yanxun .
JOURNAL OF COMBINATORIAL DESIGNS, 2022, 30 (10) :671-683
[38]   Latin Squares with a Unique Intercalate [J].
Mendis, Mahamendige Jayama Lalani ;
Wanless, Ian M. .
JOURNAL OF COMBINATORIAL DESIGNS, 2016, 24 (06) :279-293
[39]   On Parity Vectors of Latin Squares [J].
Donovan, D. M. ;
Grannell, M. J. ;
Griggs, T. S. ;
Lefevre, J. G. .
GRAPHS AND COMBINATORICS, 2010, 26 (05) :673-684
[40]   Autoparatopisms of Quasigroups and Latin Squares [J].
Mendis, Mahamendige Jayama Lalani ;
Wanless, Ian M. .
JOURNAL OF COMBINATORIAL DESIGNS, 2017, 25 (02) :51-74