Steiner triple systems of order 19 and 21 with subsystems of order 7

被引:22
作者
Kaski, Petteri [1 ]
Ostergard, Patric R. J. [2 ]
Topalova, Svetlana [3 ]
Zlatarski, Rosen [3 ]
机构
[1] Helsinki Univ Technol, Lab Theoret Comp Sci, FIN-02150 Espoo, Finland
[2] Helsinki Univ Technol, Dept Elect & Commun Engn, FIN-02150 Espoo, Finland
[3] Bulgarian Acad Sci, Inst Math & Informat, Veliko Tarnovo 5000, Bulgaria
关键词
classification; doubly resolvable design; Steiner triple system; subsystem;
D O I
10.1016/j.disc.2006.06.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Steiner triple systems (STSs) with subsystems of order 7 are classified. For order 19, this classification is complete, but for order 21 it is restricted to Wilson-type systems, which contain three subsystems of order 7 on disjoint point sets. The classified STSs of order 21 are tested for resolvability; none of them is doubly resolvable. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2732 / 2741
页数:10
相关论文
共 50 条
  • [41] Cancellative hypergraphs and Steiner triple systems
    Liu, Xizhi
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 167 : 303 - 337
  • [42] Independent sets in Steiner triple systems
    Forbes, AD
    Grannell, MJ
    Griggs, TS
    [J]. ARS COMBINATORIA, 2004, 72 : 161 - 169
  • [43] Representing Graphs in Steiner Triple Systems
    Archdeacon, Dan
    Griggs, Terry
    Psomas, Costas
    [J]. GRAPHS AND COMBINATORICS, 2014, 30 (02) : 255 - 266
  • [44] Automorphism groups of Steiner triple systems
    Doyen, Jean
    Kantor, William M.
    [J]. ALGEBRAIC COMBINATORICS, 2022, 5 (04): : 593 - 608
  • [45] Rigid Steiner Triple Systems Obtained from Projective Triple Systems
    Grannell, M. J.
    Knor, M.
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (07) : 279 - 290
  • [46] Perfect dexagon triple systems with given subsystems
    Wang, Jinhua
    [J]. DISCRETE MATHEMATICS, 2009, 309 (09) : 2930 - 2933
  • [47] Egalitarian Steiner triple systems for data popularity
    Colbourn, Charles J.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (10) : 2373 - 2395
  • [48] Point Code Minimum Steiner Triple Systems
    Colbourn C.J.
    Ling A.C.H.
    [J]. Designs, Codes and Cryptography, 1998, 14 (2) : 141 - 146
  • [49] Distance and fractional isomorphism in Steiner triple systems
    Forbes A.D.
    Grannell M.J.
    Griggs T.S.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2007, 56 (1) : 17 - 32
  • [50] Trinal Decompositions of Steiner Triple Systems into Triangles
    Lindner, Charles C.
    Meszka, Mariusz
    Rosa, Alexander
    [J]. JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (05) : 204 - 211