Steiner triple systems of order 19 and 21 with subsystems of order 7

被引:22
作者
Kaski, Petteri [1 ]
Ostergard, Patric R. J. [2 ]
Topalova, Svetlana [3 ]
Zlatarski, Rosen [3 ]
机构
[1] Helsinki Univ Technol, Lab Theoret Comp Sci, FIN-02150 Espoo, Finland
[2] Helsinki Univ Technol, Dept Elect & Commun Engn, FIN-02150 Espoo, Finland
[3] Bulgarian Acad Sci, Inst Math & Informat, Veliko Tarnovo 5000, Bulgaria
关键词
classification; doubly resolvable design; Steiner triple system; subsystem;
D O I
10.1016/j.disc.2006.06.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Steiner triple systems (STSs) with subsystems of order 7 are classified. For order 19, this classification is complete, but for order 21 it is restricted to Wilson-type systems, which contain three subsystems of order 7 on disjoint point sets. The classified STSs of order 21 are tested for resolvability; none of them is doubly resolvable. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2732 / 2741
页数:10
相关论文
共 50 条
  • [21] Kirkman triple systems of order 21 with nontrivial automorphism group
    Cohen, MB
    Colbourn, CJ
    Ives, LA
    Ling, ACH
    MATHEMATICS OF COMPUTATION, 2002, 71 (238) : 873 - 881
  • [22] Existence and embeddings of partial Steiner triple systems of order ten with cubic leaves
    Bryant, D
    Maenhaut, B
    Quinn, K
    Webb, BS
    DISCRETE MATHEMATICS, 2004, 284 (1-3) : 83 - 95
  • [23] Extended Bicolorings of Steiner Triple Systems of Order 2h-1
    Bujtas, Csilla
    Gionfriddo, Mario
    Guardo, Elena
    Milazzo, Lorenzo
    Tuza, Zsolt
    Voloshin, Vitaly
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (06): : 1265 - 1276
  • [24] The Steiner quadruple systems of order 16
    Kaski, Petteri
    Ostergard, Patric R. J.
    Pottonen, Olli
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (08) : 1764 - 1770
  • [25] Constructions for large sets of υ-1 {0, υ/3}-intersecting Steiner triple systems of order υ
    Ji, Lijun
    Shen, Rui
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2094 - 2103
  • [26] Kirkman triple systems with subsystems
    Kokkala, Janne, I
    Ostergard, Patric R. J.
    DISCRETE MATHEMATICS, 2020, 343 (09)
  • [27] Methods of Constructing and Enumerating the Steiner triple System with Order 31
    Li Xiao-yi
    Xu Zhao-di
    Chou Wan-xi
    APPLIED SCIENCE, MATERIALS SCIENCE AND INFORMATION TECHNOLOGIES IN INDUSTRY, 2014, 513-517 : 3061 - 3064
  • [28] On Large Sets of v−1 L-Intersecting Steiner Triple Systems of Order v
    F. Franek
    M. J. Grannell
    T. S. Griggs
    A. Rosa
    Designs, Codes and Cryptography, 2002, 26 : 243 - 256
  • [29] Enumerating Steiner triple systems
    Heinlein, Daniel
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2023, 31 (10) : 479 - 495
  • [30] On large sets of v-1 L-intersecting steiner triple systems of order v
    Franek, F
    Grannell, MJ
    Griggs, TS
    Rosa, A
    DESIGNS CODES AND CRYPTOGRAPHY, 2002, 26 (1-3) : 243 - 256