Steiner triple systems of order 19 and 21 with subsystems of order 7

被引:22
作者
Kaski, Petteri [1 ]
Ostergard, Patric R. J. [2 ]
Topalova, Svetlana [3 ]
Zlatarski, Rosen [3 ]
机构
[1] Helsinki Univ Technol, Lab Theoret Comp Sci, FIN-02150 Espoo, Finland
[2] Helsinki Univ Technol, Dept Elect & Commun Engn, FIN-02150 Espoo, Finland
[3] Bulgarian Acad Sci, Inst Math & Informat, Veliko Tarnovo 5000, Bulgaria
关键词
classification; doubly resolvable design; Steiner triple system; subsystem;
D O I
10.1016/j.disc.2006.06.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Steiner triple systems (STSs) with subsystems of order 7 are classified. For order 19, this classification is complete, but for order 21 it is restricted to Wilson-type systems, which contain three subsystems of order 7 on disjoint point sets. The classified STSs of order 21 are tested for resolvability; none of them is doubly resolvable. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2732 / 2741
页数:10
相关论文
共 50 条
  • [1] STEINER TRIPLE SYSTEMS OF ORDER 21 WITH SUBSYSTEMS
    Heinlein, Daniel
    Ostergard, Patric R. J.
    GLASNIK MATEMATICKI, 2023, 58 (02) : 233 - 245
  • [2] The Steiner triple systems of order 19
    Kaski, P
    Östergård, PRJ
    MATHEMATICS OF COMPUTATION, 2004, 73 (248) : 2075 - 2092
  • [3] Sparse Steiner triple systems of order 21
    Kokkala, Janne I.
    Ostergard, Patric R. J.
    JOURNAL OF COMBINATORIAL DESIGNS, 2021, 29 (02) : 75 - 83
  • [4] ENUMERATION OF STEINER TRIPLE SYSTEMS WITH SUBSYSTEMS
    Kaski, Petteri
    Ostergard, Patric R. J.
    Popa, Alexandru
    MATHEMATICS OF COMPUTATION, 2015, 84 (296) : 3051 - 3067
  • [5] Cycle Switching in Steiner Triple Systems of Order 19
    Erskine, Grahame
    Griggs, Terry S.
    JOURNAL OF COMBINATORIAL DESIGNS, 2025, 33 (05) : 195 - 204
  • [6] The Cycle Switching Graph of the Steiner Triple Systems of Order 19 is Connected
    Petteri Kaski
    Veli Mäkinen
    Patric R. J. Östergård
    Graphs and Combinatorics, 2011, 27 : 539 - 546
  • [7] The Cycle Switching Graph of the Steiner Triple Systems of Order 19 is Connected
    Kaski, Petteri
    Makinen, Veli
    Ostergard, Patric R. J.
    GRAPHS AND COMBINATORICS, 2011, 27 (04) : 539 - 546
  • [8] Steiner Triple Systems of Order 21 with a Transversal Subdesign TD(3, 6)
    Y. Guan
    M. J. Shi
    D. S. Krotov
    Problems of Information Transmission, 2020, 56 : 23 - 32
  • [9] Steiner triple systems of order 15 and their codes
    Tonchev, VD
    Weishaar, RS
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 58 (01) : 207 - 216
  • [10] Steiner Triple Systems of Order 21 with a Transversal Subdesign TD(3,6)
    Guan, Y.
    Shi, M. J.
    Krotov, D. S.
    PROBLEMS OF INFORMATION TRANSMISSION, 2020, 56 (01) : 23 - 32