ON GREGUS-CIRIC MAPPINGS ON WEIGHTED GRAPHS

被引:3
作者
Alfuraidan, Monther Rashed [1 ]
Khamsi, Mohamed Amine [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
来源
FIXED POINT THEORY | 2019年 / 20卷 / 01期
关键词
Fixed point; Gregus-Ciric-contraction; monotone mappings; weighted graph;
D O I
10.24193/fpt-ro.2019.1.02
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept of monotone Gregus-Ciric-contraction mappings in weighted digraphs. Then we establish a fixed point theorem for monotone Gregus-Ciric-contraction mappings defined in convex weighted digraphs.
引用
收藏
页码:19 / 29
页数:11
相关论文
共 13 条
[1]   On monotone Ciric quasi-contraction mappings with a graph [J].
Alfuraidan, Monther Rashed .
FIXED POINT THEORY AND APPLICATIONS, 2015,
[2]  
[Anonymous], 1953, Theory and Applications of Distance Geometry
[3]   ON MONOTONE CIRIC QUASI-CONTRACTION MAPPINGS [J].
Bachar, M. ;
Khamsi, M. A. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (02) :511-519
[4]  
Banach S., 1922, Fund. Maths., V3, P133, DOI [DOI 10.4064/FM-3-1-133-181, 10.4064/fm-3-1-133-181]
[5]   On a generalization of a Gregus fixed point theorem [J].
Ciric, L .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2000, 50 (03) :449-458
[6]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[7]   ON THE EXISTENCE AND APPROXIMATION OF FIXED POINTS FOR CIRIC TYPE CONTRACTIVE MAPPINGS [J].
Djafari-Rouhani, B. ;
Moradi, Sirous .
QUAESTIONES MATHEMATICAE, 2014, 37 (02) :179-189
[8]  
Gregus M., 1980, Boll. Un. Mat. Ital. A, V17, P193
[9]  
Jachymski J, 2008, P AM MATH SOC, V136, P1359
[10]   Investigations into general metrics [J].
Menger, K .
MATHEMATISCHE ANNALEN, 1928, 100 :75-163