Quasi zero-dimensional MoS2 quantum dots decorated 2D Ti3C2Tx MXene as advanced electrocatalysts for hydrogen evolution reaction

被引:24
|
作者
Chen, Long [1 ]
Liang, Junmei [1 ,3 ]
Zhang, Qicheng [1 ]
Hu, Xuewen [1 ]
Peng, Wenchao [1 ,2 ]
Li, Yang [1 ,2 ]
Zhang, Fengbao [1 ]
Fan, Xiaobin [1 ,2 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn, State Key Lab Chem Engn, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Chem & Chem Engn Guangdong Lab, Shantou 515031, Peoples R China
[3] Beijing Inst Metrol, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
MoS2 quantum dots; Ti3C2Tx MXene; High-percentage; 1T-phase; Hydrogen evolution reaction; ACTIVE EDGE SITES; TITANIUM CARBIDE; NANOSHEETS; EFFICIENT; ALKALINE; HETEROSTRUCTURES; PERFORMANCE; GRAPHENE; CATALYST; CARBON;
D O I
10.1016/j.ijhydene.2021.12.185
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing advanced noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) is still a great challenge. Herein, a novel HER catalyst with quasi zero-dimensional (0D) MoS2 quantum dots (QDs) supported on two-dimensional (2D) Ti3C2Tx MXene nanosheets is facilely synthesized. The MoS2 QDs/Ti3C2Tx nanohybrid retains the unique layer structure, and the MoS2 QDs are in situ formed and distributed uniformly. The obtained MoS2 QDs/Ti3C2Tx catalyst exhibits superior electrocatalytic activity due to its excellent conductivity, abundant of active sites exposed and a high percentage of 1T metallic phase (~76%) of MoS2 QDs. Remarkably, an early HER overpotential of 220 mV at 10 mA cm(-2) and a small Tafel slope of 72 mV dec(-1) of MoS2 QDs/Ti3C2Tx are achieved in 0.5 M H2SO4 solution. In addition, the exchange current density of MoS2 QDs/Ti3C2Tx is ~5 times larger compared with pure MoS2, thus demonstrating an accelerated charge transfer during the electrocatalytic process. (c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10583 / 10593
页数:11
相关论文
共 50 条
  • [31] Intercalation of coordination polymer to regulate interlayer of 2D layered MoS2 for hydrogen evolution reaction
    Lu, Xiaohan
    Tao, Tingxian
    Chen, Liru
    Lu, Siyu
    Zhang, Yilin
    Xie, Jiaxin
    Wu, Zhichuan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (42) : 18347 - 18356
  • [32] Epitaxial synthesis of Ni-MoS2/Ti3C2Tx MXene heterostructures for hydrodesulfurization
    Vinoba, Mari
    Navvamani, R.
    Al-Sheeha, Hanadi
    RSC ADVANCES, 2020, 10 (21) : 12308 - 12317
  • [33] Facile synthesis of coral-like Pt nanoparticles/MXene (Ti3C2Tx) with efficient hydrogen evolution reaction activity
    Li, Bishan
    Ye, Rongkai
    Wang, Qianyu
    Liu, Xiaoqing
    Fang, Pingping
    Hu, Jianqiang
    IONICS, 2021, 27 (03) : 1221 - 1231
  • [34] Platinum Nanoparticle-Electrodeposited Ti3C2Tx MXene as a Binder-Free Electrocatalyst for Improved Hydrogen Evolution
    Jian, Xuan
    Li, Tan
    Guo, Shanshan
    Gao, Loujun
    Fu, Feng
    Tian, Yue
    Wu, Yucheng
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (03) : 3092 - 3099
  • [35] Heterostructures of 2D Core/Shell Nanoplatelets with 2D MoS2 as an Efficient Electrocatalyst for Hydrogen Evolution Reaction
    Medda, Anusri
    Biswas, Rathindranath
    Dastider, Saptarshi Ghosh
    Ghosh, Soubhik
    Mondal, Krishnakanta
    Haldar, Krishna Kanta
    Patra, Amitava
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (22) : 11745 - 11753
  • [36] Chlorophyll derivative sensitized monolayer Ti3C2Tx MXene nanosheets for photocatalytic hydrogen evolution
    Li, Yuanlin
    Liu, Yanxiang
    Zheng, Tianfang
    Sasaki, Shin-ichi
    Tamiaki, Hitoshi
    Wang, Xiao-Feng
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2022, 427
  • [37] 2D Ti3C2Tx MXene-Supported Graphitic Carbon-Nitride-Decorated Co3O4 Nanoparticles as Efficient Catalysts for Oxygen Evolution Reaction
    Li, Xi
    Guo, Youping
    Li, Yiran
    Fu, Renchun
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (11) : 5774 - 5786
  • [38] 2D MXene Nanomaterials as Electrocatalysts for Hydrogen Evolution Reaction (HER): A Review
    Peera, Shaik Gouse
    Koutavarapu, Ravindranadh
    Chao, Liu
    Singh, Lakhveer
    Murugadoss, Govindhasamy
    Rajeshkhanna, Gaddam
    MICROMACHINES, 2022, 13 (09)
  • [39] A feasible and environmentally friendly method to simultaneously synthesize MoS2 quantum dots and pore-rich monolayer MoS2 for hydrogen evolution reaction
    Zhou, Qiulan
    Luo, Xiaohu
    Li, Yali
    Nan, Yanxia
    Deng, Haoyun
    Ou, Encai
    Xu, Weijian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (01) : 433 - 442
  • [40] Improvement of hydrogen evolution catalytic performance of MoS2 nanoflowers by constructing MoS2/MXene Ti3C2 heterostructure petals
    Ji, Siyu
    Guo, Jianping
    Yang, Nan
    Song, Jie
    Wang, Yanyan
    Xing, Guangjian
    FUNCTIONAL MATERIALS LETTERS, 2024, 17 (03)