On the Lr Hodge theory in complete non compact Riemannian manifolds

被引:0
作者
Amar, Eric [1 ]
机构
[1] Univ Bordeaux, Talence, France
关键词
DIFFERENTIAL FORMS; EQUATION;
D O I
10.1007/s00209-017-1844-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study solutions for the Hodge laplace equation on p forms with estimates for Our main hypothesis is that has a spectral gap in We use this to get non classical Hodge decomposition theorems. An interesting feature is that to prove these decompositions we never use the boundedness of the Riesz transforms in These results are based on a generalisation of the Raising Steps Method to complete non compact Riemannian manifolds.
引用
收藏
页码:751 / 795
页数:45
相关论文
共 24 条
[1]  
Amar E., 2015, HAL01158323
[2]  
Amar E, 2016, J GEOM ANAL, V26, P898, DOI 10.1007/s12220-015-9576-8
[3]  
[Anonymous], 1992, MEASURE THEORY FINE
[4]   The heat kernel weighted Hodge Laplacian on noncompact manifolds [J].
Bueler, EL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (02) :683-713
[5]   THE DIFFERENTIAL FORM SPECTRUM OF HYPERBOLIC SPACE [J].
DONNELLY, H .
MANUSCRIPTA MATHEMATICA, 1981, 33 (3-4) :365-385
[6]  
Gaffney M. P., 1955, T AM MATH SOC, V78, P426, DOI 10.1090/S0002-9947-1955-0068888-1
[7]  
Gilbarg D, 1998, GRUNDLHEREN MATH WIS, V224
[8]  
GROMOV M, 1991, J DIFFER GEOM, V33, P263
[9]   The Calderon-Zygmund inequality and Sobolev spaces on noncompact Riemannian manifolds [J].
Gueneysu, Batu ;
Pigola, Stefano .
ADVANCES IN MATHEMATICS, 2015, 281 :353-393
[10]  
Hebey E., 1997, Rend. Mat. Appl. (7), V17, P569