Backlund transformation classification, integrability and exact solutions to the generalized Burgers'-KdV equation

被引:13
作者
Liu, Hanze [1 ,2 ]
Xin, Xiangpeng [1 ]
Wang, Zenggui [1 ]
Liu, Xiqiang [1 ]
机构
[1] Liaocheng Univ, Sch Math Sci, Liaocheng 252059, Shandong, Peoples R China
[2] Binzhou Univ, Dept Math, Binzhou 256603, Shandong, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2017年 / 44卷
基金
中国国家自然科学基金;
关键词
Direct method; Homogeneous balance principle; Backlund transformation; Integrability; Exact solution;
D O I
10.1016/j.cnsns.2016.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Backlund transformations (BTs) of the nonlinear evolution equations (NLEEs). Based on the homogeneous balance principle (HBP), the existence of the BT of the generalized Burgers'-KdV (B-KdV) equation is classified, then the BTs of the nonlinear equations are given. In general, the method can be used to construct BTs of the nonlinear evolution equations in polynomial form. Furthermore, the integrability and exact explicit solutions to the nonlinear equations are investigated. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 18
页数:8
相关论文
共 20 条
[1]  
Ablowitz M.J., 1981, SOLITON INVERSE SCAT
[2]  
[Anonymous], APPL LIE GROUPS DIFF
[3]  
Bluman George W, 2013, SYMMETRIES DIFFERENT, V81
[4]   Parametric Backlund transformations I: Phenomenology [J].
Clelland, JN ;
Ivey, TA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (03) :1061-1093
[5]  
Conte R., 2008, The Painleve Handbook
[6]  
Gu C., 2004, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry
[7]  
Guo B., 1997, SOLITON
[8]   NONLINEAR-WAVE MOTION GOVERNED BY THE MODIFIED BURGERS-EQUATION [J].
LEEBAPTY, IP ;
CRIGHTON, DG .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 323 (1570) :173-209
[9]  
Li Y.S., 1999, Soliton and Integrable System
[10]  
Liu HZ, 2016, NONLINEAR DYNAM, V85, P281, DOI 10.1007/s11071-016-2683-7